Anaconda+Pytorch+Pycharm安装

1.官网下载最新版anaconda,一步步按指令下来,其中一步两个都打勾就不用配置环境变量。

win+R打开命令行,再输入cmd,然后输入以下指令后按回车,分别得到conda版本和python版本

 2.深度学习离不开显卡,像tensorflow,pytorch都只支持英伟达显卡,当然没有显卡也可以,显卡主要起到训练加速的作用,关于显卡的配置主要涉及驱动和cuda工具包,cuda工具包可跟随pytorch一键安装,我们只需要检查显卡驱动是否正确安装。Alt+Ctrl+Delete打开任务管理器发现以下GPU可以正确显示型号则意味着显卡驱动正确安装了。

但是为了避免各种报错和各种不匹配需要以下操作:

更新驱动链接:官方驱动 | NVIDIA

 打开cmd,输入nvidia-smi。

找到nvidia=sim.exe所在路径C:\Windows\System32\DriverStore\FileRepository\nvltig.inf_amd64_ce837e92efe9cbc4,添加到系统变量

打开下载CUDA官网,CUDA Toolkit 11.6 Update 1 Downloads | NVIDIA Developer,查看

 

适合的CUDA ,我的显卡驱动是511.79,都可以,下面选择下载安装CUDA版本,链接为:https://developer.nvidia.com/cuda-toolkit-archive,点击安装(ps下面图中安装的是11.2,我后来确定安装的11.3,只不过太麻烦没重新截图)

点击以下

选择一个安装路径

 

新版本比当前版本低的话就不打前面的勾

找两个位置新建两个文件夹

安装cuDNN

cuDNN下载链接为:https://developer.nvidia.com/rdp/cudnn-download

将cuDNN文件夹下的子文件夹分别复制到CUDN对应的文件夹下,如图所示:

 

 

 

3.在安装pytorch之前要学会如何管理环境,首先理解一个package是一个工具包,环境理解为一个房子。我们本来有一个名为base的房子(基环境)里本来有一个版本的pytorch,但是我们假如项目用另一个版本pytorch,我们可以另外建一个名为PyTorch房子(环境),在里面放我们本次项目所需要版本的pytorch,我们可以每次项目调用适合的环境。

接下来创建虚拟环境,进入 Anaconda prompt 命令窗口

切换到国内的源来提高下载速度 ,命令如下:

conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple

首先输入指令:conda create -n PyTorch python=3.7(ps:PyTorch为环境名,后面是用到的包比如版本为3.7的包)按回车,然后输入y;

其次输入指令:conda activate PyTorch(这是激活上面虚拟环境指令);

再次输入指令:pip list,这个可以查看安装了哪些包,发现其中没有pytorch,所以要安装。

打开pytorch官网,输入下面对应cuda画线指令(ps:下面选项中一般Windows下选conda,Linux下选pip):

 然后输入y,等待完成安装。

4.检验pytorch安装是否成功(如图所示)

输入python

然后输入import torch,什么都不出现则安装成功

再输入torch.cuda.is_available(),回车出现True,意味着GPU可以被pytorch使用

5.pycharm(python编辑器)安装

打开pycharm官网Download PyCharm: Python IDE for Professional Developers by JetBrains

选择社区版安装即可(社区版免费功能也够用)

 安装过程中把所有框都勾选即可,就一步步安装下来就可以。

AnacondaPyCharmPyTorch都是在Python开发中非常实用的工具。下面将分别介绍它们的安装。 首先,Anaconda是一个数据科学的IDE,含有许多科学计算库和Python包。在其官方网站(https://www.anaconda.com/products/individual)上下载对应操作系统的安装包,双击打开安装即可。在安装时需要进行一些设置,比如选择安装路径和添加环境变量等。安装完成后,可以在Anaconda的Navigator中找到安装好的Python环境,并在其中安装需要的包。 其次,PyCharm是一个受欢迎的Python开发工具,它有专业版和社区版两个版本。在其官方网站(https://www.jetbrains.com/pycharm/download/)上下载对应版本的安装包,双击打开安装即可。在安装时同样需要进行一些配置,比如选择安装路径、添加环境变量等。安装完成后,可以在PyCharm中打开Anaconda安装Python环境,方便地进行Python开发。 最后,PyTorch是一个深度学习框架,安装流程有点复杂。首先需要安装Anaconda,然后在其中创建一个新的环境。在命令行上输入以下命令即可安装PyTorch: ``` conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 其中,包含了PyTorch的核心模块torch,以及一些常用的扩展模块torchvision和torchaudio。如果希望使用GPU进行计算,则需要额外安装对应的CUDA工具。 总的来说,AnacondaPyCharmPyTorch都是非常实用的工具,在安装时需要注意一些配置,这些工具能够提高Python开发的效率和学习深度学习的体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值