1.官网下载最新版anaconda,一步步按指令下来,其中一步两个都打勾就不用配置环境变量。
win+R打开命令行,再输入cmd,然后输入以下指令后按回车,分别得到conda版本和python版本
2.深度学习离不开显卡,像tensorflow,pytorch都只支持英伟达显卡,当然没有显卡也可以,显卡主要起到训练加速的作用,关于显卡的配置主要涉及驱动和cuda工具包,cuda工具包可跟随pytorch一键安装,我们只需要检查显卡驱动是否正确安装。Alt+Ctrl+Delete打开任务管理器发现以下GPU可以正确显示型号则意味着显卡驱动正确安装了。
但是为了避免各种报错和各种不匹配需要以下操作:
更新驱动链接:官方驱动 | NVIDIA
打开cmd,输入nvidia-smi。
找到nvidia=sim.exe所在路径C:\Windows\System32\DriverStore\FileRepository\nvltig.inf_amd64_ce837e92efe9cbc4,添加到系统变量
打开下载CUDA官网,CUDA Toolkit 11.6 Update 1 Downloads | NVIDIA Developer,查看
适合的CUDA ,我的显卡驱动是511.79,都可以,下面选择下载安装CUDA版本,链接为:https://developer.nvidia.com/cuda-toolkit-archive,点击安装(ps下面图中安装的是11.2,我后来确定安装的11.3,只不过太麻烦没重新截图)
点击以下
选择一个安装路径
新版本比当前版本低的话就不打前面的勾
找两个位置新建两个文件夹
安装cuDNN
cuDNN下载链接为:https://developer.nvidia.com/rdp/cudnn-download
将cuDNN文件夹下的子文件夹分别复制到CUDN对应的文件夹下,如图所示:
3.在安装pytorch之前要学会如何管理环境,首先理解一个package是一个工具包,环境理解为一个房子。我们本来有一个名为base的房子(基环境)里本来有一个版本的pytorch,但是我们假如项目用另一个版本pytorch,我们可以另外建一个名为PyTorch房子(环境),在里面放我们本次项目所需要版本的pytorch,我们可以每次项目调用适合的环境。
接下来创建虚拟环境,进入 Anaconda prompt
命令窗口
切换到国内的源来提高下载速度 ,命令如下:
conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple
首先输入指令:conda create -n PyTorch python=3.7(ps:PyTorch为环境名,后面是用到的包比如版本为3.7的包)按回车,然后输入y;
其次输入指令:conda activate PyTorch(这是激活上面虚拟环境指令);
再次输入指令:pip list,这个可以查看安装了哪些包,发现其中没有pytorch,所以要安装。
打开pytorch官网,输入下面对应cuda画线指令(ps:下面选项中一般Windows下选conda,Linux下选pip):
然后输入y,等待完成安装。
4.检验pytorch安装是否成功(如图所示)
输入python
然后输入import torch,什么都不出现则安装成功
再输入torch.cuda.is_available(),回车出现True,意味着GPU可以被pytorch使用
5.pycharm(python编辑器)安装
打开pycharm官网Download PyCharm: Python IDE for Professional Developers by JetBrains
选择社区版安装即可(社区版免费功能也够用)
安装过程中把所有框都勾选即可,就一步步安装下来就可以。