感觉这道题还是蛮有意义的,因为有时候打表预处理真的能够提升很多的时间。但是想要打表好一点还是不容易啊,比如说我看另外一份题解,光打表就我跑了3分钟都还没有跑出来,后来实在是没有耐心了,自己写了一份代码,打表就用了几秒,我也是心累。
看到数据范围,虽然说只有200,但是如果直接在交上去的代码中直接跑dp绝对会超时,而我们注意到对于每一个题目的答案都是唯一的,不会改变,所以可以先预处理出答案然后直接O(1)查询水掉,之所以重点是打表,下面给出打表代码和标程(有注释)
打表代码:
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int ans2[205],ans3[205],dp[205];
int main(){
freopen("柱爷的下凡.cpp","w",stdout);
int sum,last;
ans2[1]=2;ans3[1]=3;
ans2[2]=2;ans3[2]=3;
ans2[3]=2;ans3[3]=3;
for(int i=4;i<=201;i++){
last=1e9;
for(int j=2;j<i;j++){//第二枚硬币
for(int k=j+1;k<=i;k++){//第三枚硬币
sum=0;//总共用了多少硬币
dp[0]=0;//dp表示使用当前两种硬币凑出i的币值最少需要多少枚硬币
for(int l=1;l<=i;l++){ //用前面的算出来的更新dp
if(l>=k)dp[l]=min(min(dp[l-k],dp[l-j]),dp[l-1])+1;//可以用第三种硬币
else if(l>=j)dp[l]=min(dp[l-j],dp[l-1])+1;//可用第二种
else dp[l]=dp[l-1]+1;//只能用第一种
}
for(int l=1;l<=i;l++)sum+=dp[l];//总共用了多少硬币
if(sum<last){//更新最终答案
last=sum;
ans2[i]=j;ans3[i]=k;
}
}
}
}
printf("#include<cstdio>\n\n\n");
printf("int ans2[210],ans3[210];\n");
printf("int main(){\n");
for(int i=1;i<=201;i++)printf("ans2[%d]=%d , ans3[%d]=%d;\n",i,ans2[i],i,ans3[i]);
printf("return 0;\n}");
}
标程代码(200+自信水过 啦啦啦):
#include<cstdio>
int ans2[210],ans3[210];
int n,T;
int main(){
ans2[1]=2 , ans3[1]=3;
ans2[2]=2 , ans3[2]=3;
ans2[3]=2 , ans3[3]=3;
ans2[4]=2 , ans3[4]=3;
ans2[5]=2 , ans3[5]=3;
ans2[6]=2 , ans3[6]=3;
ans2[7]=2 , ans3[7]=5;
ans2[8]=3 , ans3[8]=4;
ans2[9]=3 , ans3[9]=4;
ans2[10]=2 , ans3[10]=5;
ans2[11]=2 , ans3[11]=5;
ans2[12]=4 , ans3[12]=6;
ans2[13]=4 , ans3[13]=6;
ans2[14]=4 , ans3[14]=6;
ans2[15]=3 , ans3[15]=7;
ans2[16]=4 , ans3[16]=6;
ans2[17]=3 , ans3[17]=7;
ans2[18]=4 , ans3[18]=6;
ans2[19]=3 , ans3[19]=8;
ans2[20]=3 , ans3[20]=8;
ans2[21]=5 , ans3[21]=7;
ans2[22]=4 , ans3[22]=9;
ans2[23]=4 , ans3[23]=9;
ans2[24]=5 , ans3[24]=8;
ans2[25]=5 , ans3[25]=8;
ans2[26]=5 , ans3[26]=8;
ans2[27]=5 , ans3[27]=8;
ans2[28]=4 , ans3[28]=9;
ans2[29]=5 , ans3[29]=8;
ans2[30]=5 , ans3[30]=8;
ans2[31]=4 , ans3[31]=9;
ans2[32]=5 , ans3[32]=8;
ans2[33]=5 , ans3[33]=8;
ans2[34]=7 , ans3[34]=11;
ans2[35]=7 , ans3[35]=11;
ans2[36]=7 , ans3[36]=11;
ans2[37]=5 , ans3[37]=12;
ans2[38]=5 , ans3[38]=12;
ans2[39]=5 , ans3[39]=12;
ans2[40]=7 , ans3[40]=11;
ans2[41]=5 , ans3[41]=12;
ans2[42]=5 , ans3[42]=12;
ans2[43]=5 , ans3[43]=12;
ans2[44]=7 , ans3[44]=11;
ans2[45]=7 , ans3[45]=11;
ans2[46]=7 , ans3[46]=11;
ans2[47]=7 , ans3[47]=11;
ans2[48]=6 , ans3[48]=14;
ans2[49]=6 , ans3[49]=14;
ans2[50]=6 , ans3[50]=14;
ans2[51]=6 , ans3[51]=14;
ans2[52]=8 , ans3[52]=13;
ans2[53]=8 , ans3[53]=13;
ans2[54]=8 , ans3[54]=13;
ans2[55]=8 , ans3[55]=13;
ans2[56]=8 , ans3[56]=13;
ans2[57]=6 , ans3[57]=14;
ans2[58]=6 , ans3[58]=14;
ans2[59]=6 , ans3[59]=14;
ans2[60]=8 , ans3[60]=13;
ans2[61]=8 , ans3[61]=13;
ans2[62]=6 , ans3[62]=14;
ans2[63]=6 , ans3[63]=14;
ans2[64]=6 , ans3[64]=14;
ans2[65]=8 , ans3[65]=13;
ans2[66]=8 , ans3[66]=13;
ans2[67]=8 , ans3[67]=13;
ans2[68]=8 , ans3[68]=13;
ans2[69]=7 , ans3[69]=17;
ans2[70]=7 , ans3[70]=17;
ans2[71]=7 , ans3[71]=17;
ans2[72]=7 , ans3[72]=17;
ans2[73]=7 , ans3[73]=17;
ans2[74]=9 , ans3[74]=14;
ans2[75]=7 , ans3[75]=17;
ans2[76]=7 , ans3[76]=17;
ans2[77]=7 , ans3[77]=17;
ans2[78]=7 , ans3[78]=17;
ans2[79]=7 , ans3[79]=17;
ans2[80]=10 , ans3[80]=16;
ans2[81]=10 , ans3[81]=16;
ans2[82]=10 , ans3[82]=16;
ans2[83]=10 , ans3[83]=16;
ans2[84]=8 , ans3[84]=19;
ans2[85]=8 , ans3[85]=19;
ans2[86]=8 , ans3[86]=19;
ans2[87]=8 , ans3[87]=19;
ans2[88]=6 , ans3[88]=20;
ans2[89]=10 , ans3[89]=17;
ans2[90]=11 , ans3[90]=15;
ans2[91]=11 , ans3[91]=15;
ans2[92]=11 , ans3[92]=15;
ans2[93]=11 , ans3[93]=15;
ans2[94]=11 , ans3[94]=18;
ans2[95]=11 , ans3[95]=18;
ans2[96]=12 , ans3[96]=19;
ans2[97]=12 , ans3[97]=19;
ans2[98]=12 , ans3[98]=19;
ans2[99]=12 , ans3[99]=19;
ans2[100]=12 , ans3[100]=19;
ans2[101]=12 , ans3[101]=19;
ans2[102]=12 , ans3[102]=19;
ans2[103]=12 , ans3[103]=19;
ans2[104]=12 , ans3[104]=19;
ans2[105]=12 , ans3[105]=19;
ans2[106]=12 , ans3[106]=19;
ans2[107]=12 , ans3[107]=19;
ans2[108]=12 , ans3[108]=19;
ans2[109]=12 , ans3[109]=19;
ans2[110]=12 , ans3[110]=19;
ans2[111]=13 , ans3[111]=18;
ans2[112]=12 , ans3[112]=19;
ans2[113]=12 , ans3[113]=19;
ans2[114]=12 , ans3[114]=19;
ans2[115]=12 , ans3[115]=19;
ans2[116]=12 , ans3[116]=19;
ans2[117]=12 , ans3[117]=19;
ans2[118]=12 , ans3[118]=19;
ans2[119]=12 , ans3[119]=19;
ans2[120]=12 , ans3[120]=19;
ans2[121]=12 , ans3[121]=19;
ans2[122]=12 , ans3[122]=19;
ans2[123]=7 , ans3[123]=23;
ans2[124]=7 , ans3[124]=23;
ans2[125]=8 , ans3[125]=27;
ans2[126]=8 , ans3[126]=27;
ans2[127]=8 , ans3[127]=27;
ans2[128]=9 , ans3[128]=23;
ans2[129]=9 , ans3[129]=23;
ans2[130]=9 , ans3[130]=23;
ans2[131]=9 , ans3[131]=30;
ans2[132]=9 , ans3[132]=30;
ans2[133]=14 , ans3[133]=22;
ans2[134]=14 , ans3[134]=22;
ans2[135]=10 , ans3[135]=26;
ans2[136]=14 , ans3[136]=22;
ans2[137]=8 , ans3[137]=27;
ans2[138]=8 , ans3[138]=27;
ans2[139]=14 , ans3[139]=22;
ans2[140]=8 , ans3[140]=27;
ans2[141]=8 , ans3[141]=27;
ans2[142]=10 , ans3[142]=26;
ans2[143]=8 , ans3[143]=27;
ans2[144]=8 , ans3[144]=27;
ans2[145]=8 , ans3[145]=27;
ans2[146]=8 , ans3[146]=27;
ans2[147]=8 , ans3[147]=27;
ans2[148]=8 , ans3[148]=27;
ans2[149]=8 , ans3[149]=27;
ans2[150]=8 , ans3[150]=27;
ans2[151]=8 , ans3[151]=27;
ans2[152]=8 , ans3[152]=27;
ans2[153]=9 , ans3[153]=30;
ans2[154]=9 , ans3[154]=30;
ans2[155]=9 , ans3[155]=30;
ans2[156]=9 , ans3[156]=30;
ans2[157]=9 , ans3[157]=30;
ans2[158]=9 , ans3[158]=30;
ans2[159]=9 , ans3[159]=30;
ans2[160]=9 , ans3[160]=30;
ans2[161]=9 , ans3[161]=30;
ans2[162]=9 , ans3[162]=30;
ans2[163]=9 , ans3[163]=30;
ans2[164]=9 , ans3[164]=30;
ans2[165]=9 , ans3[165]=30;
ans2[166]=9 , ans3[166]=30;
ans2[167]=9 , ans3[167]=30;
ans2[168]=9 , ans3[168]=30;
ans2[169]=9 , ans3[169]=30;
ans2[170]=9 , ans3[170]=30;
ans2[171]=9 , ans3[171]=30;
ans2[172]=12 , ans3[172]=31;
ans2[173]=12 , ans3[173]=31;
ans2[174]=12 , ans3[174]=31;
ans2[175]=12 , ans3[175]=31;
ans2[176]=10 , ans3[176]=34;
ans2[177]=10 , ans3[177]=34;
ans2[178]=10 , ans3[178]=34;
ans2[179]=10 , ans3[179]=33;
ans2[180]=10 , ans3[180]=34;
ans2[181]=10 , ans3[181]=34;
ans2[182]=10 , ans3[182]=34;
ans2[183]=10 , ans3[183]=34;
ans2[184]=10 , ans3[184]=34;
ans2[185]=10 , ans3[185]=34;
ans2[186]=10 , ans3[186]=34;
ans2[187]=10 , ans3[187]=34;
ans2[188]=12 , ans3[188]=31;
ans2[189]=12 , ans3[189]=31;
ans2[190]=12 , ans3[190]=31;
ans2[191]=12 , ans3[191]=31;
ans2[192]=12 , ans3[192]=31;
ans2[193]=12 , ans3[193]=31;
ans2[194]=12 , ans3[194]=31;
ans2[195]=12 , ans3[195]=31;
ans2[196]=12 , ans3[196]=31;
ans2[197]=17 , ans3[197]=27;
ans2[198]=12 , ans3[198]=31;
ans2[199]=12 , ans3[199]=31;
ans2[200]=12 , ans3[200]=31;
ans2[201]=12 , ans3[201]=31;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
printf("1 %d %d\n",ans2[n],ans3[n]);
}
return 0;
}