我打赌一开始就想到树剖的绝对不止我一个 。(这几天做树剖做习惯了qaq)
树状数组维护dfs序,用到了dfs序的一个有趣的性质就是以一个节点为根节点那么他的进出时间戳之间的区间就是它这一棵子树的所有节点,所以dfs序中,利用差分的思想,根节点的值只会对区间之间(也就是以他为根的子树的节点们)赵成影响,下方边权以后,将in[]i[++ out[i]--就可以的到从1到 i 的前缀和即土路数。
提醒:因为是下方边权所以一开始的维护需要从2节点开始(看注释)
dfs序推荐题目:http://blog.csdn.net/pbihao/article/details/52682570
#include<cstdio>
#include<cstring>
#include<iostream>
#define maxn 250020
using namespace std;
int n,m;
int head[maxn],tot,tim,in[maxn],out[maxn],c[maxn*4];
char s[5];
struct edge{
int v,next;
}e[maxn*2];
void adde(int a,int b){e[tot].v=b,e[tot].next=head[a];head[a]=tot++;}
void update(int x,int add){
while(x<=tim){
c[x]+=add;
x+=x&-x;
}
}
int query(int x){
int ans=0;
while(x>0){
ans+=c[x];
x-=x&-x;
}
return ans;
}
void dfs(int u,int fa){
in[u]=++tim;
for(int i=head[u];i!=-1;i=e[i].next){
int v=e[i].v;if(v==fa)continue;
dfs(v,u);
}
out[u]=++tim;
}
int main(){
scanf("%d",&n);
memset(head,-1,sizeof(head));
for(int a,b,i=1;i<n;i++){
scanf("%d%d",&a,&b);
adde(a,b),adde(b,a);
}
dfs(1,1);
scanf("%d",&m);
for(int i=2;i<=n;i++)update(in[i],1),update(out[i],-1);//每错看前面
for(int a,b,cas=1;cas<=n+m-1;cas++){
scanf("%s",s);
scanf("%d",&a);
if(s[0]=='W')printf("%d\n",query(in[a]));
else {
scanf("%d",&b);
if(a<b)swap(a,b);
update(in[a],-1);
update(out[a],1);
}
}
return 0;
}
)