反过来想就是给一个无限长的字符串,然后在fail树上永远跑不到val==1的点,failed树是一个有向图,因此只要有向图出现环就可以了,dfs维护点的信息,在栈中,已经出栈,还没有进栈判断一下就好了。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstdlib>
#define maxn 30021
using namespace std;
int ch[maxn][2],fail[maxn],q[maxn*2],n,cnt,val[maxn],vis[maxn];
char s[maxn];
void insert(){
int rt=0,len=strlen(s);
for(int c,i=0;i<len;i++){
c=s[i]-'0';
if(!ch[rt][c])ch[rt][c]=++cnt;
rt=ch[rt][c];
}val[rt]=1;
}
void make(){
int l=0,r=1;
while(l<r){
int u=q[l++];
for(int i=0;i<2;i++){
if(ch[u][i])fail[ch[u][i]]= u==0 ? 0 :ch[fail[u]][i],q[r++]=ch[u][i];
else ch[u][i]=u==0 ? 0 : ch[fail[u]][i];
}val[u]|=val[fail[u]];
}
}
void dfs(int u){
if(val[u])return;
vis[u]=1;
for(int i=0;i<2;i++){
if(!vis[ch[u][i]])dfs(ch[u][i]);
else if(vis[ch[u][i]]==1){
puts("TAK");exit(0);
}
}vis[u]=2;
}
int main(){
scanf("%d",&n);
if(n==0)return puts("TAK"),0;
for(int i=1;i<=n;i++)scanf("%s",s),insert();
make();
dfs(0);
puts("NIE");
return 0;
}