【BZOJ 2756】[SCOI2012]奇怪的游戏 网络流+二分

236 篇文章 0 订阅
17 篇文章 0 订阅

很有趣的做法。

首先,题目要求每一次的加数都必须加相邻的两个格子,这样我们将棋盘黑白染色就能很显然的发现每一次的加数都是将一个黑格子和一个白格子加一。

继续分析:设黑格子的个数为c1,和为s1,白格子的个数为c2,和为s2,设最后棋盘所有数字为x

x*c1-s1=x*c2-s2

x=(s1-s2)/(c1-c2)

1.c1!=c2直接网络流判断

2.c1!=c2显然如果棋盘现在所有数为x,由于c1==c2所以可以将每个格子都再加一,也就是说满足单调性,这样就可以二分了。

最后网络流怎么判呢?很简单

s->黑格子,权值为x-val     白格子->t权值为x-val  黑白之间连边,权值为inf,最后判断是否满流就好了

#include<cstdio>
#include<cstring>
#include<iostream>
#define maxn 162121
#define inf 36028797018963967ll
#define LL long long
using namespace std;
const int dx[]={-1,0,0,1};
const int dy[]={0,1,-1,0};
int T,last[maxn],head[1641],n,m,tot,h[maxn],nu[41][41],vis[41][41];
int s,t,q[maxn];
LL mat[41][41];
struct edge{int v,next;LL w;}e[maxn];
void adde(int a,int b,LL c){
	e[tot].v=b,e[tot].next=head[a],e[tot].w=c;head[a]=tot++;
	e[tot].v=a,e[tot].next=head[b],e[tot].w=0;head[b]=tot++;
} 
bool bfs(){
	for(int i=s;i<=t;i++)h[i]=-1;
	h[s]=0;q[0]=s;
	int l=0,r=1;
	while(l<r){
		int u=q[l++];
		for(int v,i=head[u];i!=-1;i=e[i].next)
			if(h[v=e[i].v]==-1&&e[i].w){
				h[v]=h[u]+1;q[r++]=v;
			}
	}return h[t]!=-1;
}
LL dfs(int u,LL f){
	if(!f||u==t)return f;
	LL used=0,w;
	for(int v,i=last[u];i!=-1;i=e[i].next)
		if(h[v=e[i].v]==h[u]+1&&e[i].w){
			w=min(f-used,e[i].w);
			last[u]=i;
			w=dfs(v,w);
			used+=w;
			e[i].w-=w,e[i^1].w+=w;
			if(used==f)return f;
		}
	if(!used)h[u]=-1;
	return used;
}
LL dinic(){
	LL ans=0;
	while(bfs()){
		for(int i=s;i<=t;i++)last[i]=head[i];
		ans+=dfs(s,inf);
	}return ans;
}
bool cheak(LL x){
	tot=0;s=0,t=n*m+1;LL ans=0;
	memset(head,-1,sizeof(head));
	for(int id,i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			id=nu[i][j];
			if(vis[i][j]){
				ans+=x-mat[i][j];
				adde(s,nu[i][j],x-mat[i][j]);
				for(int x,y,k=0;k<4;k++){
					x=i+dx[k],y=j+dy[k];
					if(x<1||x>n||y<1||y>m)continue;
					adde(id,nu[x][y],inf);
				}
			}else adde(id,t,x-mat[i][j]);
		}
	}
	return ans==dinic();
}
void solve(){
	LL s1=0,c1=0,s2=0,c2=0,x=0,mx=0;
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			scanf("%lld",&mat[i][j]);
			mx=max(mx,mat[i][j]);
			vis[i][j]=i+j&1;
			nu[i][j]=(i-1)*m+j;
			if(vis[i][j])c1++,s1+=mat[i][j];
			else c2++,s2+=mat[i][j];
		}
	}
	
	if(c1!=c2){
		x=(s1-s2)/(c1-c2);
		if(x>=mx&&cheak(x))printf("%lld\n",x*c1-s1);
		else puts("-1");
	}else{
		if(s1!=s2)puts("-1");
		else{
			LL l=mx,r=inf;
			while(l<r){
				LL mid=l+r>>1ll;
				if(cheak(mid))r=mid;
				else l=mid+1;
			}
			printf("%lld\n",l*c1-s1);
		}	
	}
}
int main(){
	scanf("%d",&T);
	while(T--)solve();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值