从五月十号以来就开始忙着实习的工作以及课设的事情,所以半个月来都没又发博客了。最近在准备概率论的考试,所以总结了一些概率论基础知识。我觉得我们还是有必要把概率论基础给掌握的,笔试有时也会考到,面试中也有可能问到譬如选牌这类概率智力题。主要是理解古典概型和全概率、贝叶斯公式以及伯努利实验。
一.概率论基本概念
1.什么是概率论
现实世界中的现象分为两大类:分为确定性的和随机性现象;而概率论研究的是在随机性的现象中的规律的预测和决策。
2.随机试验
随机试验指的是
- 可以在相同的情况下重复进行
- 试验结果不会只有一种
- 实验之前不知道会出现哪个结果
3.样本空间
随机试验的所有结果集合被称为样本空间
4.事件运算关系
文氏图:
例子:
5.事件运算律
二.概率与古典概型
1.概率的定义
2.概率性质
TIP:在非古典概率中,P(A)和P(B)是有可能发生冲突的,如下,所以需要有P(AB)这个排除
3.概率例题
4.古典概型【排列组合求解】
1.定义
- 试验的样本空间是有限的
- 每个样本点出现的可能性是相同的
2.计算公式
3.例题
分房间问题/生日问题
5.几何概型
1.定义
- 样本空间由无数样本点组成,但是可以形成一个区域,该区域是可以度量的
- 向样本空间中投掷一个点,其在任意位置出现的概率都是等可能的
2.例题
三.条件概率
1.定义
例题
2.乘法定理
2.全概率公式
3.贝叶斯公式
例题
四.随机变量与分布函数
1.随机变量定义
2.分布函数定义
3.分布函数的性质
例题
口袋中装有3个白球和2个红球,从中任取3个球,求取出的3个球中白球数的分布函数
4.离散型随机变量
例题
5.离散分布模型
1.两点分布 & 0 - 1分布
2.伯努利实验 & 二项分布
-
伯努利实验
伯努利实验指的是在相同条件下重复进行实验当数学模型,并且只有两个可能的结果。 -
n重伯努利实验
每次实验中某事件A或者发生或不发生,进行n次实验。例如每天的天气只有下雨和不下雨,求n天中有一天下雨的概率;每次投篮可以中或不中,求n次投篮中有2次不中当概率等,都属于n重伯努利实验。 -
二项分布
二项分布即描述n重伯努利实验的数学模型:
进行n次伯努利实验,其中每次成功的概率为p,如果要有k次成功的概率为:
3. 泊松定理 & 泊松分布
柏松定理解决的是大数据量情况下的不放回抽样,且抽样失败概率很小时的问题,用以替代掉n重伯努利实验的的二项分布。
例题
6.连续分布模型
1.定义
2.密度函数
3.密度函数性质
P{X = a} = 0,连续分布情况下,在某个特定的点的概率为0
分布函数求导可得密度函数
例题
4.均匀分布
性质