数理统计及概率论-核心知识总结


从五月十号以来就开始忙着实习的工作以及课设的事情,所以半个月来都没又发博客了。最近在准备概率论的考试,所以总结了一些概率论基础知识。我觉得我们还是有必要把概率论基础给掌握的,笔试有时也会考到,面试中也有可能问到譬如选牌这类概率智力题。主要是理解古典概型和全概率、贝叶斯公式以及伯努利实验。

一.概率论基本概念

1.什么是概率论

现实世界中的现象分为两大类:分为确定性的和随机性现象;而概率论研究的是在随机性的现象中的规律的预测和决策。

2.随机试验

随机试验指的是

  1. 可以在相同的情况下重复进行
  2. 试验结果不会只有一种
  3. 实验之前不知道会出现哪个结果
3.样本空间

随机试验的所有结果集合被称为样本空间

4.事件运算关系

在这里插入图片描述

文氏图:
在这里插入图片描述

例子:
在这里插入图片描述

5.事件运算律

在这里插入图片描述

二.概率与古典概型

1.概率的定义

在这里插入图片描述

2.概率性质

在这里插入图片描述
在这里插入图片描述
TIP:在非古典概率中,P(A)和P(B)是有可能发生冲突的,如下,所以需要有P(AB)这个排除

3.概率例题

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ExROMdS3-1591247582548)(http://note.youdao.com/yws/res/14144/1D35EC7229BA43929EB063E046E41497)]

4.古典概型【排列组合求解】
1.定义
  1. 试验的样本空间是有限的
  2. 每个样本点出现的可能性是相同的
2.计算公式

在这里插入图片描述

3.例题

在这里插入图片描述

分房间问题/生日问题

在这里插入图片描述

5.几何概型
1.定义
  1. 样本空间由无数样本点组成,但是可以形成一个区域,该区域是可以度量的
  2. 向样本空间中投掷一个点,其在任意位置出现的概率都是等可能的
2.例题

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cViahHF0-1591247582554)(http://note.youdao.com/yws/res/14570/5687474A0E00438EB5E3975ACF1051BA)]
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三.条件概率

1.定义

在这里插入图片描述

例题

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7333ZTxQ-1591247582561)(http://note.youdao.com/yws/res/15471/E71775286FCD4A7FA05382DE67AAD7AD)]
在这里插入图片描述

2.乘法定理

在这里插入图片描述

2.全概率公式

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LYDfh414-1591247582563)(http://note.youdao.com/yws/res/15486/0551C320895E4F62B16169E0CEB6EA98)]

3.贝叶斯公式

也可以表示为(乘法定理):
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SddyM0oZ-1591247582565)(http://note.youdao.com/yws/res/15481/DC1FDA561DA94019BE7A73443810DA15)]

例题

在这里插入图片描述

四.随机变量与分布函数

1.随机变量定义

在这里插入图片描述

2.分布函数定义

在这里插入图片描述

3.分布函数的性质

在这里插入图片描述

例题

口袋中装有3个白球和2个红球,从中任取3个球,求取出的3个球中白球数的分布函数

在这里插入图片描述
在这里插入图片描述

4.离散型随机变量

在这里插入图片描述

例题

在这里插入图片描述

5.离散分布模型
1.两点分布 & 0 - 1分布

在这里插入图片描述

2.伯努利实验 & 二项分布
  • 伯努利实验
    伯努利实验指的是在相同条件下重复进行实验当数学模型,并且只有两个可能的结果。

  • n重伯努利实验
    每次实验中某事件A或者发生或不发生,进行n次实验。例如每天的天气只有下雨和不下雨,求n天中有一天下雨的概率;每次投篮可以中或不中,求n次投篮中有2次不中当概率等,都属于n重伯努利实验。

  • 二项分布

二项分布即描述n重伯努利实验的数学模型:

进行n次伯努利实验,其中每次成功的概率为p,如果要有k次成功的概率为:

在这里插入图片描述

3. 泊松定理 & 泊松分布

柏松定理解决的是大数据量情况下的不放回抽样,且抽样失败概率很小时的问题,用以替代掉n重伯努利实验的的二项分布。
在这里插入图片描述

例题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.连续分布模型
1.定义

在这里插入图片描述

2.密度函数

在这里插入图片描述

3.密度函数性质

P{X = a} = 0,连续分布情况下,在某个特定的点的概率为0

在这里插入图片描述

分布函数求导可得密度函数

例题

在这里插入图片描述

4.均匀分布

在这里插入图片描述

性质

在这里插入图片描述
在这里插入图片描述

例题

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BoringRong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值