作者简介:
高科,先后在 IBM PlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。
并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业,消防等领域的工业化产品),合作开发商业性游戏
(谢谢你的关注)
=====================================================================
目录
关于数据集
罐装饮料识别数据集是一个用于训练和测试机器学习模型的数据集,旨在识别不同种类或品牌的罐装饮料。该数据集包含了大量的罐装饮料图像,每个图像都有相应的标签,表示饮料的种类或品牌。
罐装饮料识别,一千多张图片,支持YOLO,COCO,VOC格式的标记,可识别常见的薯片,东鹏特饮,红牛,芬达,养乐多,可乐,雪碧,王老吉,AD钙奶,金典,特仑苏,蒙牛,伊利,旺仔牛奶等多种饮料

数据集分割
1676总图像数
预处理
增强
在机器学习和深度学习中,常常会将数据集分为训练集(train set)、测试集(test set)和验证集(validation set)三部分。
训练集(train set)是用于模型的训练的数据集。在训练过程中,模型通过学习训练集中的样本来调整自己的参数,以使其能够更好地对未知数据进行预测。训练集通常是最大的数据集,因为越多的数据可以提供更多的信息和更好的训练效果。
测试集(test set)是用于评估模型的泛化能力的数据集。在模型训练完成后,使用测试集中的样本来评估模型的性能,判断模型在未知数据上的表现。测试集应该是独立于训练集的,以确保对模型进行正确的评估和比较。
验证集(validation set)用于调整模型的超参数,如学习率、正则化参数等。在训练过程中,通过在验证集上评估模型的性能,可以选择最优的超参数组合,从而改善模型的泛化能力。与测试集一样,验证集也应该是独立于训练集的,以确保调整的超参数不会对模型的性能造成过拟合。
薯片
乐事
薯愿
饮料
东鹏特饮
可口可乐
哇哈哈AD钙奶
红盒子
黄盒子
百事可乐
红牛
雪碧
王老吉
芬达
牛奶
养乐多
金典
特仑苏
蒙牛
伊利
旺仔牛奶
前景
罐装饮料识别数据集的前景非常广阔。首先,它可以应用于自动化零售行业,如自动售货机或无人便利店。通过在售货机或便利店中安装摄像头并使用罐装饮料识别模型,可以实时监测和统计每种饮料的销量,并提供有效的库存管理和补货策略。
此外,罐装饮料识别数据集还可以用于食品和饮料制造业。通过使用罐装饮料识别模型,可以对生产线上的饮料进行自动分类和检测。这有助于提高生产线的效率和准确性,并减少人工错误。
此外,罐装饮料识别数据集还可以应用于市场研究和消费者行为分析。通过分析不同地区或不同时间段的饮料销售数据,可以获取消费趋势和偏好,并为饮料制造商提供市场竞争力的洞察。
总的来说,罐装饮料识别数据集具有广泛的应用前景,可以帮助提高零售行业的自动化程度,提高生产线的效率,以及提供市场洞察和竞争力分析。
数据集下载:
YOLOV11:https://download.csdn.net/download/pbymw8iwm/90056758
YOLOV9:https://download.csdn.net/download/pbymw8iwm/90056756
YOLOV8:https://download.csdn.net/download/pbymw8iwm/90056757