【状态估计】【扩展卡尔曼滤波算法的神经网络训练】BP神经网络、扩展卡尔曼滤波EKF+BP、粒子滤波PF轨迹估计研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

状态估计中的扩展卡尔曼滤波(EKF)与BP神经网络联合训练及粒子滤波(PF)轨迹估计研究

一、BP神经网络的基本原理与训练方法

二、扩展卡尔曼滤波(EKF)的数学基础与状态估计应用

三、EKF与BP神经网络的联合训练框架

四、粒子滤波(PF)在轨迹估计中的应用

五、性能对比与实验评估

六、最新研究成果与趋势

总结

📚2 运行结果

2.1 BP

2.2 扩展卡尔曼滤波EKF+BP

2.3 粒子滤波PF

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

状态估计中的扩展卡尔曼滤波(EKF)与BP神经网络联合训练及粒子滤波(PF)轨迹估计研究

一、BP神经网络的基本原理与训练方法

BP(Back Propagation)神经网络是一种多层前馈网络,其核心是通过误差反向传播调整网络权重,以最小化输出误差。训练过程分为两个阶段:

  1. 正向传播:输入数据通过输入层→隐含层→输出层逐层计算,激活函数(如Sigmoid、ReLU)引入非线性。若输出与期望值差异较大,则进入反向传播阶段。

  2. 反向传播:误差从输出层开始,根据链式法则计算各层权重的梯度,利用梯度下降法更新权重。反复迭代直至误差收敛至阈值内。

训练步骤

  • 初始化:随机设置权重和偏置(通常为小随机数)。
  • 前向计算:逐层加权求和并通过激活函数生成输出。
  • 误差计算:使用均方误差(MSE)等损失函数量化输出偏差。
  • 权重更新:通过反向传播调整权重,结合学习率与动量项防止局部极小值。

局限性:易陷入局部极小值,依赖初始权重和学习率设置。


二、扩展卡尔曼滤波(EKF)的数学基础与状态估计应用

EKF是卡尔曼滤波(KF)的非线性扩展,通过雅可比矩阵线性化系统模型,适用于非线性动态系统状态估计(如机器人定位、电池SOC估计)。

核心步骤

  1. 状态预测

    其中,f为非线性状态转移函数。

  2. 协方差预测

    Fk​为状态转移函数的雅可比矩阵。

  3. 更新阶段:利用观测值修正预测,计算卡尔曼增益并更新状态和协方差。


优势与局限

  • 优势:处理非线性系统,实时性强。
  • 局限:依赖精确模型,噪声敏感,线性化误差可能发散。

三、EKF与BP神经网络的联合训练框架

EKF与BP的结合旨在补偿模型误差和噪声干扰,常见于电池SOC估计、电机控制等领域。

典型结构

  1. EKF作为状态估计器:输出状态向量(如SOC)和协方差矩阵。
  2. BP神经网络作为误差补偿器:接收EKF的输出(如状态值、卡尔曼增益、新息序列),训练后输出误差修正值。

  3. 联合优化:BP网络通过监督学习(如均方误差)优化EKF的估计结果,提高鲁棒性。

应用案例

  • 锂电池SOC估计:BP网络补偿EKF的模型误差,将均方根误差(RMSE)从1.55%降至0.64%,最大误差从3.29%降至1.24%。

  • 永磁同步电机控制:BP优化EKF的协方差矩阵QQ和RR,提升转速估计精度。

训练方法

  • 数据准备:通过实验(如恒流放电、脉冲测试)获取输入-输出数据集。
  • 网络设计:输入层(EKF状态、协方差、增益)、隐含层(非线性激活)、输出层(误差补偿值)。
  • 联合训练:将EKF输出与真实值的误差作为BP的训练目标,通过梯度下降优化权重。

四、粒子滤波(PF)在轨迹估计中的应用

PF基于蒙特卡洛采样,通过粒子集近似状态后验概率分布,特别适合非线性、非高斯系统的轨迹估计。

核心步骤

  1. 初始化:生成随机粒子集,赋予初始权重。
  2. 预测:根据运动模型传播粒子状态。
  3. 权重更新:根据观测数据调整粒子权重(如高斯概率密度函数)。
  4. 重采样:按权重重新生成粒子,避免权重退化。

典型场景

  • 目标跟踪:估计无人机、车辆的非线性轨迹(图11显示PF轨迹与真实轨迹误差<1%)。

  • 机器人SLAM:结合粒子滤波与路网拓扑,行车轨迹匹配正确率>85%。
  • 折叠线运动估计:PF在噪声环境下仍能保持高精度(图11中滤波轨迹与真实轨迹高度吻合)。

优势

  • 可处理多峰分布(如目标遮挡时的多个可能位置)。
  • 无需线性化假设,适应复杂动态模型。

五、性能对比与实验评估
  1. EKF vs. BP vs. PF

    • EKF:计算效率高,但依赖模型精度。
    • BP:强非线性拟合能力,但需大量训练数据。
    • PF:适应复杂噪声,但计算复杂度高。
  2. EKF+BP联合模型

    • 在锂电池SOC估计中,BP-EKF的均方根误差较单独EKF降低58.6%。
    • 引入噪声后,BP-EKF的平均误差仍<1.3%,鲁棒性显著优于传统方法。
  3. PF在轨迹估计中的表现

    • 城市路网匹配中,PF算法正确率>85%,优于全局优化方法。
    • 折叠线运动场景下,滤波轨迹与真实轨迹的均方误差<0.5%。

六、最新研究成果与趋势
  1. 自适应BP-EKF:结合麻雀搜索算法(SSA)优化BP初始权重,进一步提升SOC估计精度至0.22%。
  2. 混合滤波框架:如PF与有限脉冲响应(FIR)结合,轨迹跟踪误差较单一PF降低30%。

  3. 多传感器融合:EKF+BP联合模型在UWB-IMU定位中,通过误差补偿将定位精度提升至厘米级。

总结

  • EKF+BP联合训练通过神经网络的非线性补偿,显著提升状态估计精度和鲁棒性,尤其在电池管理、电机控制中表现突出。
  • 粒子滤波在复杂轨迹估计中具有不可替代性,适用于多峰分布和非线性场景。
  • 未来方向包括智能优化算法与深度学习结合(如SSA-BP)、多模态传感器融合,以及实时性与精度的平衡优化

📚2 运行结果

2.1 BP

2.2 扩展卡尔曼滤波EKF+BP

2.3 粒子滤波PF

部分代码:

%误差分析
for i=1:N
    Err_Obs(i)=RMS(x(:,i),z(:,i));%滤波前的误差
    Err_EKF(i)=RMS(x(:,i),Xekf(:,i));%滤波后的误差
    Err_EKF1(i)=RMS(x(:,i),Xekf_1(:,i));%滤波后的误差
end
mean_Obs=mean(Err_Obs);
mean_EKF=mean(Err_EKF);
mean_EKF1=mean(Err_EKF1);
% t = 2 : N;
% figure;
% plot(t,x(1,t),'b',t,Xekf(1,t),'r*');
% legend('真实值','EKF估计值');
figure
hold on;box on;
t=(0:1:N-1);
plot(t,s(1,:),'b','LineWidth',1);%理论轨迹
plot(t,x(1,:),'--g','LineWidth',1);%实际轨迹
plot(t,z(1,:),'-or','LineWidth',1);%观测轨迹
plot(t,Xekf(1,:),':m','LineWidth',2);%卡尔曼滤波轨迹
plot(t,Xekf_1(1,:),'-.k','LineWidth',2);%卡尔曼滤波轨迹
% M=M';
% plot(M(1,:),'k','LineWidth',1);%一步预测轨迹
legend('理论轨迹','实际运动轨迹','观测轨迹','扩展卡尔曼滤波+BP后轨迹','拓展卡尔曼');
xlabel('横坐标 T/s');
ylabel('纵坐标 X/m');

figure
hold on;box on;
plot(t,Err_Obs,'-');
plot(t,Err_EKF,'--');
plot(t,Err_EKF1,'-.');
% legend('滤波前误差',num2str(mean_Observation),'基本滤波后误差','固定增益滤波后误差');
legend(sprintf('滤波前误差%.03f',mean_Obs),sprintf('扩展卡尔曼滤波+BP后误差%.03f',mean_EKF),sprintf('扩展卡尔曼滤波后误差%.03f',mean_EKF1));
xlabel('观测时间/s');
ylabel('误差值');


% 计算欧氏距离子函数
function dist=RMS(X1,X2)
if length(X2)<=2
    dist=sqrt((X1(1)-X2(1))^2);
else
    dist=sqrt((X1(1)-X2(1))^2);
end
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]毛鑫萍,李贝,张才强.粒子滤波和正则粒子滤波算法性能研究[J].电声技术, 2014(006):038.

[2]李彩菊,李亚安.扩展卡尔曼滤波和粒子滤波算法性能比较研究[C]//2009年中国西部地区声学学术交流会.2009.DOI:ConferenceArticle/5aa04062c095d722206bc5a8.

[3]王法胜,郭权.基于扩展卡尔曼粒子滤波算法的神经网络训练[J].计算机工程与科学, 2010, 32(5):48-50.DOI:10.3969/j.issn.1007130X.2010. 

[4]张应博.神经网络训练中的迭代扩展卡尔曼粒子滤波算法[J].微电子学与计算机, 2010(8):5.DOI:CNKI:SUN:WXYJ.0.2010-08-027.

[5]王法胜,郭权.基于扩展卡尔曼粒子滤波算法的神经网络训练[J].计算机工程与科学, 2010, 32(5):3.DOI:10.3969/j.issn.1007-130X.2010.05.013.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值