【中级篇】解析 DeepSeek-R1 训练过程——无需博士学位

GPT-4 的推出彻底改变了人工智能行业。但今天,与下一波推理模型(例如 OpenAI o1)相比,它感觉就像是 iPhone 4。

这些“推理模型”在推理时产生答案之前引入了思路链(CoT)思维阶段,从而提高了其推理性能。

OpenAI 一直对自己的方法秘而不宣,而 DeepSeek 则采取了相反的做法——公开分享他们的进展,并因坚持开源使命而赢得赞誉。或者正如 Marc 所说:

这个开源推理模型在数学、编码和逻辑推理等任务上与 OpenAI 的 o1 一样出色,这对开源社区……

我决定仔细研究一下 DeepSeek-R1 的训练过程。以他们的论文为指导,我把所有内容拼凑起来,并将其分解成任何人都可以理解的内容——无需 AI 博士学位。希望你会觉得它有用!

现在,让我们从基础开始。

快速入门

为了更好地理解 DeepSeek-R1 的主干,让我们介绍一下基础知识:

强化学习 (RL):模型通过根据其行为获得奖励或惩罚来学习,通过反复试验不断改进。在 LLM 的背景下,这可能涉及传统的 RL 方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值