强整数000

题目

给定三个整数 xybound ,返回 值小于或等于 bound 的所有 强整数 组成的列表 。

如果某一整数可以表示为 x^i + y^j ,其中整数 i >= 0j >= 0,那么我们认为该整数是一个 强整数

你可以按 任何顺序 返回答案。在你的回答中,每个值 最多 出现一次。

输入:x = 2, y = 3, bound = 10
输出:[2,3,4,5,7,9,10]

解题思路

  • 枚举:考虑直接枚举ij

枚举

class Solution {
    public List<Integer> powerfulIntegers(int x, int y, int bound) {
        List<Integer> ans =  new ArrayList<>();
        if(x == 1 && y == 1) {
            if(2 <= bound)ans.add(2);
            return ans;
        }
        if(x == 1 || y == 1) {
            int z = x == 1 ? y : x;
            for(int i = 0,zi = 0;(zi = (int)Math.pow(z,i)) <= bound-1;i++) {
                ans.add(zi+1);
            }
            return ans;
        }
        HashSet<Integer> res = new HashSet<>();
        for(int i = 0,xi = 0;(xi = (int)Math.pow(x,i)) < bound;i++) {
            for(int j = 0,yj = 0;(yj = (int)Math.pow(y,j)) < bound;j++) {
                    if(xi + yj <= bound) res.add(xi+yj);
            }
        }
        return new ArrayList<Integer>(res);
    }
}

复杂度分析

  • 时间复杂度:O(log⁡^2(bound)),双重循环。
  • 空间复杂度:O(log^⁡2(bound)),即哈希表空间。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值