题目:地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
核心思路:
1、从(0,0)开始走,每成功走一步标记当前位置为true,然后从当前位置往四个方向探索,返回1 + 4 个方向的探索值之和。
2.探索时,判断当前节点是否可达的标准为:
1)当前节点在矩阵内;
2)当前节点未被访问过;
3)当前节点满足 limit 限制,即位数之和小于18。
/**
* 回溯法求解机器人的运动范围
*/
public class RangeForRobot {
public static int movingCount(int threshold, int rows, int cols){
// 标记数组
boolean[][] visited = new boolean[rows][cols];
return countingSteps(threshold, rows, cols, 0, 0, visited);
}
private static int countingSteps(int threshold, int rows, int cols, int i, int j, boolean[][] visited) {
// 终止条件
if(i < 0 || i >= rows || j < 0 || j >= cols || visited[i][j] || bitSum(i) + bitSum(j) > threshold){
return 0;
}
visited[i][j] = true;
return countingSteps(threshold, rows, cols, i - 1, j, visited)
+ countingSteps(threshold, rows, cols, i + 1, j, visited)
+ countingSteps(threshold, rows, cols, i, j - 1, visited)
+ countingSteps(threshold, rows, cols, i, j + 1, visited)
+ 1;
}
// 求n的位数之和
private static int bitSum(int n) {
int count = 0;
while(n != 0){
count += n % 10;
n /= 10;
}
return count;
}
}
- 本题考点
1、考察应聘者对回溯算法的理解。通常物体或者人在二维方格运动这类问题都可以用回溯算法解决;
2、考察应聘者对数组的编程能力。我们一般都把矩阵看成一个二维的数组。只有对数组的特性充分了解,才有可能快速、正确地实现回溯法的代码编写。