精选合辑 | 30个Python数据分析及实战项目(含源码)

今天给大家推荐一个优质的Python公众号「法纳斯特」,作者:小F。

小F是211机械专业毕业的,上学的时候还造了两辆车(FSC、无碳小车),毕业以后又在车企搬了一年的砖,最终决定转行IT,从零开始学习编程。

不知不觉,到现在也已有两年多时间了。

虽然过程很艰辛,但是结果还是很值得的。目前已成功成为一名Pythoner,在一家AI领域的公司,从事图像处理,数据分析工作。

学习编程是一个比较枯燥的过程,所以小F平常喜欢分享一些有趣、有料的Python原创项目实战。从2018年8月一直到现在,已经更新接近 百篇原创 文章。

主要有Python基础、爬虫、数据分析、数据可视化等内容,非常受编程学习者的欢迎,不少文章被各大平台转载。

这里精选了30多个Python实战案例,不仅包含源码,还有使用教程(在文末提供获取方法)

在这个人工智能,大数据时代,希望你能关注我,和我一起学习,共同进步,冲鸭!

Python爬虫

Python数据分析与可视化

Python数据科学

Python小操作

以上只是部分原创文章,还有更多优质文章,就不一一展示了。

30+的Python实战案例及使用教程,可在公众号「法纳斯特」后台回复 “合辑” 获取~

????长按扫描上方二维码关注

回复「合辑」即可获取30+的Python实战案例

学习Python数据分析有很多不同的学习线路可供选择。根据引用和引用,2021年和2022年的Python数据分析学习路线是相似的,它们都包括以下几个方面: 1. 语言基础: 学习Python编程语言的基础知识,包括语法、变量、数据类型、控制流等。这是构建数据分析技能的基础。 2. 数据工具: 学习使用Python中的数据工具和库,如NumPy、Pandas和Matplotlib。这些工具可以帮助你处理和分析数据。 3. 商业分析: 学习如何应用数据分析技术来解决商业问题,包括数据清洗、数据可视化和统计分析等方面的内容。 4. 机器学习: 学习如何使用Python中的机器学习库,如Scikit-learn和TensorFlow,来构建和训练机器学习模型。 这些学习线路旨在帮助你逐步深入了解Python数据分析的各个方面,并提供适用于不同层次和兴趣的学习资源。根据个人的兴趣和需求,你可以选择其中的某些方面进行深入学习,或者按照整个学习路线来系统学习Python数据分析。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [史上最全 Python 数据分析学习路线](https://blog.csdn.net/CSDN_224022/article/details/130227133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [一篇文章说清Python数据分析,这个学习路线绝了](https://blog.csdn.net/qfxietian/article/details/122279290)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值