优化原理:
例:

若按所标序号按1 到 7进行可行解的回溯发查找,其解的寻找难度或者递归的层数会很大,因为若按图示按顺序回溯时,2节点只受1节点控制,3节点只受2节点控制,4节点只受3节点控制...
因此只有当到第6和第7节点时才能剪掉较多分支,而此时树的深度已经到达6~7层,已经是较大的计算量。
解决思路:
在此图中明显发现6,7节点控制的点数最多分别控制4个节点,而1,2,3,4控制3个节点,而选出6,7后,1节点因为被6,7约束,约束性增强,更易剪枝,以此类推选择2,3,4最后选择控制数量最少的5节点,达到扩大剪枝量的效果。
剪枝图:

#include<iostream>
#include<algorithm>
#define MAXSUM 100
using namespace std;
class Node;
bool cmp(Node a,Node b);
class Node{ //存储每个节点的信息
public:
Node(){
control = 0;
color = 0;
}
public:
int id; //节点序号
int control; //每个节点控制的点数
int color; //节点缩图颜色
};
class Map{
public:
int m; //可选颜色总数
int n; //节点个数
bool adj[

本文探讨了图的m着色问题,并提出了优化原理。通过分析,指出按序号回溯会导致大量计算量,尤其是在树深度较深时。解决方案是选择控制节点最多的6和7节点,以增强约束并扩大剪枝效果,逐步选择其他节点以减少计算复杂性。
最低0.47元/天 解锁文章
5248

被折叠的 条评论
为什么被折叠?



