16、生产系统的配置、安全保障与资源管理

生产系统的配置、安全保障与资源管理

1. 活性和就绪探针

1.1 活性探针

活性探针用于检查容器是否正常运行。虽然有检查 TCP 端口是否开放或发送 HTTP 请求等选项,但运行命令是最通用的选择,也可用于调试。例如:

- http://localhost:8000/
initialDelaySeconds: 5
periodSeconds: 30

此配置表示探针会先等待 5 秒,然后每 30 秒运行一次。默认情况下,连续三次检查失败后,容器将被重启。不过要注意,过于激进的活性探针可能会给容器带来额外负载,若服务频繁被活性探针重启,可能是探针设置过于严格、容器负载过高或两者兼而有之。

1.2 就绪探针

就绪探针用于检查容器是否准备好接受更多请求,是一种相对温和的检查方式。若测试返回错误或超时,容器不会被重启,而是被标记为不可用。例如:

spec:
  containers:
  - name: frontend-service
    readinessProbe:
      exec:
        command:
        - curl
        - http://localhost:8000/
        initialDelaySeconds: 5
        periodSeconds: 10

就绪探针通常用于避免过早接收请求,一般在容器启动后运行。它应该比活性探针更激进,因为这样更安全,

【源码免费下载链接】:https://renmaiwang.cn/s/rpwet 在进行科学计算和数据分析时,使用Python中的Numpy库是必不可少的。Numpy库提供了高性能的多维数组对象和用于处理这些数组的工具,而数组和矩阵是Numpy中两个非常重要的概念。数组(array)是一个通用于各种数值运算的同质数据结构,而矩阵(matrix)则是一种特定的二维数组,用于更专业的数学运算。在使用过程中,我们可能需要在数组和矩阵之间进行转换。本文将详细介绍如何在Numpy中进行这两种类型之间的转换,并通过实例代码进行说明。我们来了解一下什么是Numpy中的数组和矩阵。Numpy中的数组(ndarray)是一种多维的数组对象,它可以处理数值计算中的各种数据类型,包括整数、浮点数、复数等。数组的维度可以是任意的,但数组中的所有元素必须是相同的数据类型。数组通常用于一般的数值计算和数据处理任务。而Numpy中的矩阵(matrix)则是一种特殊的二维数组,它在某些方面传统的数学上的矩阵概念相仿,例如支持矩阵乘法,具有逆矩阵等属性。Numpy的矩阵类名为matrix,它继承自ndarray类,但增加了一些特定于矩阵的操作方法。当我们需要进行特定的矩阵运算,比如矩阵乘法时,使用matrix对象可能会更加直观和方便。但是,在需要进行一些通用的数组操作时,使用ndarray对象更为合适。下面将介绍如何将ndarray对象转换为matrix对象,以及如何将matrix对象转换回ndarray对象。1. ndarray转换成matrix在Numpy中,要将一个ndarray对象转换为matrix对象,可以使用numpy库中的mat函数,或者直接将ndarray对象传递给numpy.matrix的构造器。下面给出一个示例:```pythonimport numpy as np# 创建一个4x4的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值