[文献阅读]dropout as a bayesian approximation: representing model uncertainty in deep learning

剑桥大学Ghahramani发表在ICML16.

【abstract】用于回归和分类的DL工具没有表示模型不确定性。bayesian模型有数学上完备的框架推导模型不确定性,但常有过高的计算代价。
文章将深度神经网络中的dropout训练理解为 深度高斯过程 中的近似贝叶斯推理,通过dropout NN建模不确定性,不影响计算复杂度和模型准确性。仔细研究了dropout表示不确定性的属性。MNIST数据上的实验,各种网络结构,非线性函数模型,能在预测似然和RMSE上达到最新水平。考虑了深度强化学习中使用dropout不确定性。

【keypoint】NN的bayesian VB,把dropout解释为后验分布为mixture of norm, scale=0带来的参数的稀疏性/特征的选择。


背景: DL 不确定性。

离训练数据很远的点的分类,应该有一些不确定性?
实践中关键系统,需要知道模型不确定性,进而将不确定的结果交给人来处理。
强化学习中知道不确定性,可以在开发和探索环境中做选择。

bayesian 全连接NN

神经网络

训练数据 N 个,输入(特征)X,输出(标签)Y。
NN模型, L 层,
i 层的权重参数 Wi ,维度 Ki×Ki1
i 层的bias向量 bi ,维度 Ki
模型最终输出 y^
损失函数 E (比如softmax loss, square loss), L2 正则项。
目标函数 L=1NiE(yi,yi^)+λLj=1(||Wj||2+||bj||2)

概率表示

共L层 的参数 W={ Wi}
L层网络最终输出
y^(x,W)=1KLWLσ(1K1W2σ(W1x+b1))
预测概率
p(y|x,W)=N(y;y^(x,W),1τID)
p(y|x,X,Y)=p(y|x,W)p(W|X,Y)dW
其中后验 p(W|X,Y)
参数的先验 W

  • 7
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值