TensorFlow四则运算之加法:tf.add()

本文详细解析了TensorFlow中广播机制的工作原理,展示了如何通过广播使不同维度的张量能够进行逐元素相加操作,并提供了多个示例说明。同时,介绍了tf.math.add与tf.math.add_n函数的使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensor广播(boardcast):

为了凑够元素个数,便于后续计算,这里将元素进行复制,达到某一个维度,称之为广播.

1.作用:两个张量相加

tf.math.add(
    x, y, name=None
)

输入:

x是一个张量,其类型需得是:bfloat16, half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.
y同x一个类型。

输出:

一个张量。

2.例子:

import tensorflow as tf
a = tf.constant([[3, 5], [4, 8])
b = tf.constant([[1, 6], [2, 9]])
c = tf.add(a, b)
sess = tf.Session()
print sess.run(c)
输出:
[[ 4 11]
 [ 6 17]]

如果x和y的维度不一样,则会朝着维度较大的变量, 进行广播,使得二者能够逐元素相加。

import tensorflow as tf
a = tf.constant([[3, 5]]) # 广播为[[3, 5], [3, 5]]
b = tf.constant([[1, 6], [2, 9]])
c = tf.add(a, b)
sess = tf.Session()
print sess.run(c)
输出:
[[ 4 11]
 [ 5 14]]

import tensorflow as tf
a = tf.constant([[3], [5]]) # 广播为[[3, 3], [5, 5]]
b = tf.constant([[1, 6], [2, 9]])
c = tf.add(a, b)
sess = tf.Session()
print sess.run(c)
输出:
[[ 4  9]     【3+1,3+9】
 [ 7 14]]    【5+2,5+9】

3.多个tensor相加——不支持广播

tf.math.add_n(
    inputs, name=None
)

输入:

inputs:一个tensor list,具有相同维度和类型。注意:这里的维度需要相同,没有广播tensor的操作了。

例子:

import tensorflow as tf
a = tf.constant([[3, 1], [5, 1]]) 
b = tf.constant([[1, 6], [2, 9]])
c = tf.add_n([a, b, a])
sess = tf.Session()
print sess.run(c)
输出:
[[ 7  8]
 [12 11]]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值