地址:https://leetcode.cn/problems/jian-sheng-zi-ii-lcof/
描述:
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m - 1] 。请问 k[0]*k[1]*…*k[m - 1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
实例1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
实例2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
思路:这题不是难在思路,难在对数字的存储。
一开始做这个题用的动态规划,跟剑指 Offer 14- II. 剪绳子用的方法一样,但是用long储存都无法通过,应该是两个大数的乘机太大了。
然后看了评论区解答,当n>4时,可以取尽量多的3,同时n每次减3。这样答案每次最大也就乘3不会太大,可以用long储存。
答案:
class Solution {
public int cuttingRope(int n) {
if (n < 4) {
return n - 1;
}
int p = 1000000007;
long res = 1;
while (n > 4) {
res = res * 3 % p;
n -= 3;
}
return (int) (res * n % p);
}
}