剑指 Offer 14- II. 剪绳子 II

地址https://leetcode.cn/problems/jian-sheng-zi-ii-lcof/
描述
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m - 1] 。请问 k[0]*k[1]*…*k[m - 1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

实例1

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

实例2

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

思路:这题不是难在思路,难在对数字的存储。
一开始做这个题用的动态规划,跟剑指 Offer 14- II. 剪绳子用的方法一样,但是用long储存都无法通过,应该是两个大数的乘机太大了。
然后看了评论区解答,当n>4时,可以取尽量多的3,同时n每次减3。这样答案每次最大也就乘3不会太大,可以用long储存。

答案

class Solution {
    public int cuttingRope(int n) {
        if (n < 4) {
            return n - 1;
        }

        int p = 1000000007;
        long res = 1;
        while (n > 4) {
            res = res * 3 % p;
            n -= 3;
        }

        return (int) (res * n % p);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值