最短路径算法----Floyd-warshall(十字交叉算法证明)

Floyd-Warshall算法利用动态规划找到所有点对间的最短路径,能处理负权重边。通过十字交叉算法证明其正确性,避免无效更新,以k,i,j的顺序遍历实现效率提升,时间复杂度为O(n^3)。" 126655538,10499809,C#进阶赋值技术解析,"['.NET', 'C#编程', '基础教程', '编程思维', '业务逻辑']
摘要由CSDN通过智能技术生成

Floyd不同于Dijkstra,可以得到所有点对的最短路径。使用的是DP

Floyd可以处理有负权重边的情况

递推公式:w(i, j) = min{w(i, j), w(i, k) + w(k, j)},含义是i到j的最短距离】=【i到k的最短距离+k到j的最短距离】与【i到j的最短距离】中较小的那一个

看起来很简单,但是具体怎么计算呢?


依旧使用这个例子,图的表示方式为:

[[0, 7, 9,  max,  max, 14],
 [7, 0, 10, 15, max, max],
 [9, 10, 0, 11, max, 2],
 [max, 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值