问题描述:如果一个自然数 N 的 K 进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说
这个数是 K 好数。求 L 位 K 进制数中 K 好数的数目。例如 K = 4,L = 2 的时候,所有 K 好数为 11、
13、20、22、30、31、33 共 7 个。由于这个数目很大,请你输出它对 1000000007 取模后的值。
输入格式:输入包含两个正整数,K 和 L。
输出格式:输出一个整数,表示答案对 1000000007 取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定:对于 30%的数据,KL <= 106;
对于 50%的数据,K <= 16, L <= 10;
这个数是 K 好数。求 L 位 K 进制数中 K 好数的数目。例如 K = 4,L = 2 的时候,所有 K 好数为 11、
13、20、22、30、31、33 共 7 个。由于这个数目很大,请你输出它对 1000000007 取模后的值。
输入格式:输入包含两个正整数,K 和 L。
输出格式:输出一个整数,表示答案对 1000000007 取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定:对于 30%的数据,KL <= 106;
对于 50%的数据,K <= 16, L <= 10;
对于 100%的数据,1 <= K,L <= 100。
//***********************K好数
#include <stdio.h>
#include <iostream>
#include <vector>
#include <queue>
#include <math.h>
#include <algorithm>
using namespace std;
int main()
{
int K,L;
cin >> K >> L;
long long f[101][101]={0ll};
for(int i=1;i<K;i++) f[1][i]=1ll;
long long s;
for(int i=2;i<=L;i++)
{
for(int j=0;j<K;j++)
{
s=0;
for(int k=0;k<K;k++)
{
if(abs(j-k)!=1)
s+=f[i-1][k];
}
f[i][j]=s%1000000007ll;
}
}
s=0;
for(int i=0;i<K;i++)
s+=f[L][i];
cout << s%1000000007ll;
return 0;
}