奇异值分解(SVD)原理与在降维中的应用

奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1. 回顾特征值和特征向量

    我们首先回顾下特征值和特征向量的定义如下:

Ax=λx” role=”presentation” style=”text-align: center; position: relative;”>Ax=λxAx=λx

    其中A是一个n×n” role=”presentation” style=”position: relative;”>n×nn×n所对应的特征向量。

    求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n” role=”presentation” style=”position: relative;”>nn

    其中W是这n” role=”presentation” style=”position: relative;”>nn维矩阵。

    一般我们会把W的这n” role=”presentation” style=”position: relative;”>nn, 也就是说W为酉矩阵。

    这样我们的特征分解表达式可以写成

A=WΣWT” role=”presentation” style=”text-align: center; position: relative;”>A=WΣWTA=WΣWT

    注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2.  SVD的定义

    SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n” role=”presentation” style=”position: relative;”>m×nm×n

    其中U是一个m×m” role=”presentation” style=”position: relative;”>m×mm×m。下图可以很形象的看出上面SVD的定义:

    那么我们如何求出SVD分解后的U,Σ,V” role=”presentation” style=”position: relative;”>U,Σ,VU,Σ,V这三个矩阵呢?

    如果我们将A的转置和A做矩阵乘法,那么会得到n×n” role=”presentation” style=”position: relative;”>n×nn×n

    这样我们就可以得到矩阵ATA” role=”presentation” style=”position: relative;”>ATAATA的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

    如果我们将A和A的转置做矩阵乘法,那么会得到m×m” role=”presentation” style=”position: relative;”>m×mm×m

    这样我们就可以得到矩阵AAT” role=”presentation” style=”position: relative;”>AATAAT的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

    U和V我们都求出来了,现在就剩下奇异值矩阵Σ” role=”presentation” style=”position: relative;”>ΣΣ就可以了。

    我们注意到:

A=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/ui” role=”presentation” style=”text-align: center; position: relative;”>A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=Avi/uiA=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/ui

     这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ” role=”presentation” style=”position: relative;”>ΣΣ

    上面还有一个问题没有讲,就是我们说ATA” role=”presentation” style=”position: relative;”>ATAATA

    上式证明使用了:UTU=I,ΣTΣ=Σ2。” role=”presentation” style=”position: relative;”>UTU=I,ΣTΣ=Σ2UTU=I,ΣTΣ=Σ2。的特征向量组成的就是我们SVD中的U矩阵。

    进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:

σi=λi” role=”presentation” style=”text-align: center; position: relative;”>σi=λi−−√σi=λi

    这样也就是说,我们可以不用σi=Avi/ui” role=”presentation” style=”position: relative;”>σi=Avi/uiσi=Avi/ui的特征值取平方根来求奇异值。

3. SVD计算举例

    这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:

A=(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值