剑指offer(7)-斐波那契数列

题目描述-斐波那契数列


一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

题目解析


首先我们考虑最简单的情况。如果只有1级台阶,那显然只有一种跳法。如果有2级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1级;另外一种就是一次跳2级。

接着我们再来讨论一般情况。我们把n级台阶时的跳法看成是 n 的函数,记为f(n)。当 n > 2时,第一次跳的时候就有两种不同的选择:一是第一次只跳 1 级,此时跳法数目等于后面剩下的 n-1 级台阶的跳法数目,即为 f(n-1);另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的 n-2 级台阶的跳法数目,即为 f(n-2)。因此 n 级台阶的不同跳法的总数 f(n) = f(n-1) + f(n-2),分析到这里,我们不难看出这实际上就是斐波那契数列了。

代码


class Solution {
public:
     long long jumpFloor(int number) {
        int result[2] = {0,1};
        if (number < 2) {
            return result[number];
        }
        long long fibNMinusOne = 1;
        long long fibNMinusTwo = 1;
        long long fibN = 0;
        for (unsigned i = 2; i <= number; i++) {
            fibN = fibNMinusOne + fibNMinusTwo;
            fibNMinusTwo = fibNMinusOne;
            fibNMinusOne = fibN;
        }
        return fibN;
    }

};

题目描述-跳台阶


一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

解题思路


首先我们考虑最简单的情况。如果只有1级台阶,那显然只有一种跳法。如果有2级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1级;另外一种就是一次跳2级。

接着我们再来讨论一般情况。我们把n级台阶时的跳法看成是 n 的函数,记为f(n)。当 n > 2时,第一次跳的时候就有两种不同的选择:一是第一次只跳 1 级,此时跳法数目等于后面剩下的 n-1 级台阶的跳法数目,即为 f(n-1);另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的 n-2 级台阶的跳法数目,即为 f(n-2)。因此 n 级台阶的不同跳法的总数 f(n) = f(n-1) + f(n-2),分析到这里,我们不难看出这实际上就是斐波那契数列了。

代码


class Solution {
public:
     long long jumpFloor(int number) {
        int result[2] = {0,1};
        if (number < 2) {
            return result[number];
        }
        long long fibNMinusOne = 1;
        long long fibNMinusTwo = 1;
        long long fibN = 0;
        for (unsigned i = 2; i <= number; i++) {
            fibN = fibNMinusOne + fibNMinusTwo;
            fibNMinusTwo = fibNMinusOne;
            fibNMinusOne = fibN;
        }
        return fibN;
    }

};

题目描述-变态跳台阶


一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

题目解析


关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:
f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)

f(n) = f(n-1) + f(n-2) + f(n-3) + … + f(n-(n-1)) + f(n-n)

说明:
1)这里的f(n) 代表的是n个台阶有一次1,2,…n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶…n阶,得出结论:
f(n) = f(n-1)+f(n-2)+…+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + … + f(n-1)

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + … + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + … + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + … + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)

7) 得出最终结论,在n阶台阶,一次有1、2、…n阶的跳的方式时,总得跳法为:
1 ,(n=0 )
f(n) = 1 ,(n=1 )
2*f(n-1),(n>=2)

代码


class Solution {
public:
    long long jumpFloorII(int number) {
        if (number == 0) {
            return 0;
        }else if (number == 1){
            return 1;
        }else{
            return 2 * jumpFloorII(number-1);
        }
    }
};

题目描述-矩形覆盖


我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

题目解析


我们先把2*8的覆盖方法记为f(8)。用第一个1*8小矩形去覆盖大矩形的最左边时有两个选择,竖着放或者横着放。当竖着放的时候,右边还剩下2*7的区域,这种情形下的覆盖方法记为f(7)。接下来考虑横着放的情况。当1*2的小矩形横着放在左上角的时候,左下角必须和横着放一个1*2的小矩形,而在右边还剩下2*6的区域,这种情况下的覆盖方法记为f(6),因此f(8) = f(7) + f(6)。此时,我们可以看出,这仍然是斐波那契数列。

代码

class Solution {
public:
     long long rectCover(int number) {
        int result[2] = {0,1};
        if (number < 2) {
            return result[number];
        }
        long long fibNMinusOne = 1;
        long long fibNMinusTwo = 1;
        long long fibN = 0;
        for (unsigned i = 2; i <= number; i++) {
            fibN = fibNMinusOne + fibNMinusTwo;
            fibNMinusTwo = fibNMinusOne;
            fibNMinusOne = fibN;
        }
        return fibN;
    }

};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值