Math
文章平均质量分 53
Peng___Peng
这个作者很懒,什么都没留下…
展开
-
右手定则和左手定则
待会写。原创 2016-06-15 10:52:36 · 1847 阅读 · 1 评论 -
三维坐标转换
为了方便自己记忆,记录一下三维坐标旋转矩阵的推导过程。 坐标的旋转变换在很多地方都会用到,比如机器视觉中的摄像机标定、图像处理中的图像旋转、游戏编程等。 任何维的旋转可以表述为向量与合适尺寸的方阵的乘积。最终一个旋转等价于在另一个不同坐标系下对点位置的重新表述。坐标系旋转角度θ则等同于将目标点围绕坐标原点反方向旋转同样的角度θ。 若转载 2016-05-26 21:21:46 · 27556 阅读 · 0 评论 -
向量积(叉乘)
两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。向量积可以被定义为:|向量a×向量b|=|a||b|sinθ在这里θ表示两向量之间的夹角(共起点的前提下)(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。这个定义有一个问题,就是同时有两个单位向量都垂直于积:若满足垂直的条件,那么也满足。一个简单的确定满足“右手定则”的结果向转载 2016-06-22 09:14:59 · 2484 阅读 · 0 评论