Python实现子序列系列问题——最长公共子序列

原创 2018年04月16日 18:53:47

题目描述:给定两个序列X={x1, x2, x3, ...xm}和Y={y1, y2, y3, ... yn}, 求X和Y的最长公共子序列。

分析:如果采用暴力搜索的方法的话,需要穷举X的所有子序列然后分别和Y的所有子序列进行比较,从而筛选出LCS。X共有2^m个子序列,所以暴力搜索的话复杂度肯定是指数阶的,显然不实用。那我们能否通过X和Y的前缀子序列的结果分析推导出X和Y的子序列呢?

    假设X的一个前缀子序列 Xi = {x1, x2, x3, ... , xi}, Y的一个前缀子序列Yi = {y1, y2, y3, ... , yi}, 并且我们假设已知Xi和Yi的LCS为kij。那么X(i+1)和Y(i+1)的LCS是多少呢?不妨假设其LCS为k(i+1)(j+1)。稍加思考,容易发现有两种情况:(1) 如果X(i+1) = Y(i+1), 那么显然k(i+1)(j+1) = kij + 1      (2)如果X(i+1) != Y(i+1), 那么k(i+1)(j+1) = max(k(i+1)j, ki(j+1))                               看到这里对动态规划有了解的同学通常会发现,这个好像有点符合动态规划的解题特征哎!下面我们就用动态规划的解题思路继续分析一下此题:

    步骤一、子问题:要想求Xi和Yj的LCS,我们就必须先求出X(i-1)和Y(j-1)的LCS,X(i)和Y(j-1)的LCS以及X(i-1)和Y(j)的LCS,从而形成了一个递归问题

    步骤二、找出动态规划的状态转移公式

假设我们用一个数组c[i,j]来记录Xi和Yj的LCS长度,那么(1) c[i, j] = 0                     若i = 0 或 j = 0                                                                                                                       (2)c[i-1, j-1] + 1                 若i, j>0 且 X[i] = Y[j]                                                                                                               (3)max(c[i-1, j], c[i, j-1])        若i, j>0 且 X[i] != Y[j]

    步骤三、根据公式编写代码

(1)由步骤二的公式我们很容易写出递归算法:

#递归求LCS
def LCS_Length(X, Y, i, j):
    if i < 0 or j < 0:#判断递归出口
        return 0
    else:
        if X[i] == Y[j]:
            return (LCS_Length(X, Y, i-1, j-1) + 1)
        return max(LCS_Length(X, Y, i, j-1), LCS_Length(X, Y, i-1, j))

(2)递归转换成自底向上的动态规划算法

#动态规划求LCS
def LCS_Length2(X, Y):
    m = len(X)
    n = len(Y)
    #record列表用于记录Xi和Yj的LCS长度
    record = [[0 for i in range(n)] for j in range(m)]
    #外层循环从i = 0开始,依次计算record[i, j],
    #计算顺序:[0,0],[0,1],[0,2]...., [1,0],[1,1],[1,2]....
    #所以在求解record[i, j]时,我们已经保存了record[i-1, j-1], record[i, j-1], record[i-1,j](解题关键)
    for i in range(m):
        for j in range(n):
            if X[i] == Y[j]:
                if i>0 and j>0:
                    record[i][j] = record[i-1][j-1] + 1
                else:
                    record[i][j] = 1
            else:
                #此处要注意判断边界情况,即i, j 是否等于0
                if i == 0 and j>0:
                    record[i][j] = record[i][j-1]
                elif i > 0 and j==0:
                    record[i][j] = record[i-1][j]
                else:
                    record[i][j] = max(record[i-1][j], record[i][j-1])
    #返回记录LCS的数组                
    return record

步骤四重构问题的解    

        编写完代码后发现我们好像遗漏了一个问题,那就是:上述代码只帮我们求出了LCS的长度,我们如何重构LCS问题的解呢?也就是怎么输出LCS而不仅是求出LCS的长度。

       我们从新分析一下步骤一中的公式,我们是根据X[i]和X[j]是否相等,然后通过record[i-1, j-1],record[i, j-1] 或者record[i-1, j] 推导出record[i, j]的。那现在能否反过来通过比较record[i, j]  和(record[i-1, j-1],record[i, j-1] ,record[i-1, j])的值来确定X[i]和Y[j]的值是否相等呢?答案是肯定的。下面直接上代码:

#打印LCS,因为采用了递归函数所以LCS输出顺序刚好和实际情况一致
def Print_LCS(record, X, i, j):
    #递归出口
    if i==0 or j==0:
        return
    #此时X[i] = Y[j], 所以X[i]在LCS中,输出X[i]
    if record[i][j] == record[i-1][j-1] + 1:
        Print_LCS(record, X, i-1, j-1)
        print(X[i], end = '')
    #下面分别讨论X[i] != Y[j]两种情况
    elif record[i][j] == record[i-1][j]:
        Print_LCS(record, X, i-1, j)
    else:
        Print_LCS(record, X, i, j-1)

解题思路:分析问题,将原问题拆分成若干子问题,能通过子问题的解推导出原问题的解,从而发现该问题可以由动态规划解决。接着采用动态规划的解题步骤,找出状态转移公式,通过公式编写代码并且重构原问题的解!

算法优化:此题通过自底向上的动态规划算法解决的话,时间复杂度为O(n^2), 空间复杂度为O(n*n)。但通过分析公式我们可以看出:求解record[i, j]时,只用到了record[i-1]和record[i]这两行,所以我们可以用一个2*n的列表替换原来的n*n的列表。




    

动态规划 最长公共子序列 过程图解

1.基本概念       首先需要科普一下,最长公共子序列(longest common sequence)和最长公共子串(longest common substring)不是一回事儿。什么是子序...
  • hrn1216
  • hrn1216
  • 2016-05-29 22:54:25
  • 53440

最长公共子序列python实现

最长公共子序列是动态规划基本题目,下面按照动态规划基本步骤解出来。 1.找出最优解的性质,并刻划其结构特征 序列a共有m个元素,序列b共有n个元素,如果a[m-1]==b[n-1],那么a[:m]和b...
  • littlethunder
  • littlethunder
  • 2014-05-12 17:05:26
  • 10812

动态规划基础篇之最长公共子序列问题

一些概念: (1)子序列: 一个序列A = a1,a2,……an,中任意删除若干项,剩余的序列叫做A的一个子序列。也可以认为是从序列A按原顺序保留任意若干项得到的序列。 例如: 对序列 ...
  • lz161530245
  • lz161530245
  • 2017-08-08 21:12:15
  • 8853

LCS—记录,回溯输出最长公共子序列

输入 第1行:字符串A 第2行:字符串B (A,B的长度 输出 输出最长的子序列,如果有多个,随意输出1个。 输入示例 ab...
  • zwj1452267376
  • zwj1452267376
  • 2016-02-10 20:13:18
  • 1406

Python实现各类数据结构和算法---动态规划之最长公共子序列

根据《算法导论》中动态规划一章介绍的最长公共子序列原理,python实现,原理及伪代码书籍详见p223-225   #coding:utf-8 ''' Created on 2014-3-19...
  • u010454729
  • u010454729
  • 2014-03-19 21:49:06
  • 1069

最长公共子序列问题(不要求连续)

下面这篇文章介绍一下在算法设计中动态规划的最长公共子序列的问题。 最长公共子序列问题所谓,也即是分别给出长度为n和m的字符串A,B,然后找出其中最长公共子序列的最优值和最优解。 所谓最优值,也就是...
  • wuxinliulei
  • wuxinliulei
  • 2014-04-03 00:13:58
  • 1279

动态规划——最长公共子序列总结

子序列 sub sequence问题,例:最长公共子序列,[LeetCode] Distinct Subsequences(求子序列个数) 子序列和子字符串或者连续子集的不同之处在于,子序列...
  • u014511737
  • u014511737
  • 2015-09-19 10:50:08
  • 510

史上最全最丰富的“最长公共子序列”、“最长公共子串”问题的解法与思路

花了一天时间把一直以来的“最大子序列”、“最大递增子序列“、”最大公共子序列“、“最长公共子串”等问题总结了一下。其中参考了若干博文,都备注引用。 首先子序列是指一个一个序列中,由若个数(字母)组成...
  • wangdd_199326
  • wangdd_199326
  • 2017-07-31 20:12:32
  • 815

Java语言描述:动态规划法之最长公共子序列问题

问题描述:最长公共子序列的问题常用于解决字符串的相似度,是一个非常实用的算法。字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符...
  • wzq153308
  • wzq153308
  • 2015-06-08 15:45:21
  • 727

《算法导论》动态规划—最长公共子序列(不连续)--c语言实现

1、基本概念   一个给定序列的子序列就是该给定序列中去掉零个或者多个元素的序列。形式化来讲就是:给定一个序列X={x1,x2,……,xm},另外一个序列Z={z1、z2、……,zk},如果存在...
  • u012909360
  • u012909360
  • 2014-10-14 17:09:30
  • 3307
收藏助手
不良信息举报
您举报文章:Python实现子序列系列问题——最长公共子序列
举报原因:
原因补充:

(最多只允许输入30个字)