文章目录
数据分析的定义为研究、清理、建模和转换数据,以找到有用的信息、提出结论并支持决策。 本系列数据分析教程将涵盖数据分析的所有基础到高级概念,如数据可视化、数据预处理、时间序列、数据分析工具等。
一、数据分析流程
数据分析是由统计学家 John Tukey 在 20 世纪 70 年代开发的。它是分析数据的过程、解释此类系统结果的方法以及规划数据组以使其分析更容易、更准确或更真实的模式。
因此,数据分析是从不同来源获取大量非结构化数据并将其转换为信息的过程,经过以下过程:
- 数据需求规范
- 数据采集
- 数据处理
- 数据清理
- 数据分析
- 沟通交流
二、数据分析于建模的需求
通过数据分析,可以更好地理解问题的本质,从而构建更准确的数学模型。也能帮助我们识别关键变量,发现数据中的潜在模式和趋势,这对于选择合适的建模方法至关重要。
数据分析还可以用来验证和优化数学模型。通过分析模型的输出结果与实际数据的对比,可以评估模型的准确性和有效性,并进行必要的调整。这个过程有助于我们不断改进模型,使其更好地反映现实问题。
将数据分析纳入数学建模过程中,表明我们可以通过更深入地理解数据特征来构建更精确的模型。这不仅能提高模型的预测能力,还能帮助我们发现之前未知的关系和洞见,从而为问题求解提供更全面的视角。
三、现实生活中数据分析的应用
- 更好的决策: 从长远来看,数据分析的主要优势是更好的决策。我们不再仅仅依赖知识,而是越来越多地在做出决定之前查看数据。
- 识别潜在风险: 当今世界的公司在高风险条件下取得成功,但这些环境需要关键的风险管理流程,而广泛的数据有助于开发新的风险管理解决方案。数据可以提高实际模拟的有效性,以预测未来风险并制定更好的规划。
- 提高工作效率: 数据分析允许分析大量数据并以结构化方式呈现数据,以帮助实现组织的目标。反映组织内部的可能性和进展,活动可以提高工作效率和生产力。允许管理人员与员工共享详细数据,从而营造高效和协作的文化。
- 提供相关产品: 产品是每个组织的石油,而且通常是组织最重要的资产。产品管理团队的作用是确定推动战略创建的趋势以及独特功能和服务的活动计划。
- 跟踪客户行为变化: 市场上的产品有很多可供消费者选择。必须关注消费者的需求和期望,因此对客户行为进行数据分析非常重要。
四、数据分析的先决条件
为了增强数据分析技能,我们需要学习这些资源,以便在该领域获得最佳实践。
- Python 数据分析
- 用于数据分析的 SQL
- Python数据可视化
- 数据分析数据集