逆元的求解

求解逆元的思路

1:什么是逆元

如果两个数相乘对 m m m取模等于1,则称这两个数互为逆元。

2:费马小定理

如果 m m m是素数, a a a是任意数,则有 a m − 1 a^{m-1} am1≡1( m m m);

接下来根据逆元的定义则有 a a a* a m − 2 a^{m-2} am2≡1( m m m);

所以 a a a% m m m的逆元就是 a m − 2 a^{m-2} am2% m m m;

a m − 2 a^{m-2} am2用快速幂来求解

#include<iostream>
#include<algorithm>
using namespace std;

typedef long long ll;
const int mod = 998244353;

int quick_pow(int a, int k) {
	int res = 1;
	while (k) {
		if (k & 1)res = (ll)res * a % mod;
		k >>= 1;
		a = (ll)a * a % mod;
	}
	return res;
}

int inverse(int a){
	return quick_pow(a, mod - 2) % mod;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米兰的小码匠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值