二阶魔方还原教程

目录

第一步 底面

第二步 顶面(OLL)

第三步 整体换角(XLL)


一般常见的二阶魔方还原方法是根据三阶的还原方法再加以简化改良而成。因为二阶可以理解为三阶的8个角块,所以可以这样说:只要会还原三阶,就一定会还原二阶。

科学计算证明,一个随意打乱的二阶魔方,即使是最复杂的状态,仍可以在14步之内(180°旋转的情况当作两步的前提下)就可以还原。也就是说,如果我们知道每一种打乱状态的排列组合情形的最短路径,那么我们最多只需14步就可以还原一个二阶。

但是,我们人类不可能像电脑一样每次都寻找出最少步骤来还原魔方,所以我们需要一些比较容易观察且操作方便的方法来还原。二阶除了可以用三阶的方法还原,主流还原方法有色先法和面先法。这里介绍的是相对比较简单而且速度较快的面先法。

二阶快速法无论是初学者还是已经学过一段时间的朋友,都可以很轻松的上手,甚至可以在四天内Sub10秒。它的原理很简单,无非是先两面,然后直接调整上下两层的角块,完成。

重点:在完成底面和顶面的时候均不需要考虑是否要对齐颜色!只需要完成两面先!这就是这种解法快速的关键!

过程: 第一步:底面 ---> 第二步:顶面(OLL) ---> 第三步:整体换角(XLL)  

第一步 底面

这一步里十五秒的观察很重要,尽量在十五秒内把第一面的完成步聚想好,争取在在两秒内完成一面.  

第二步 顶面(OLL)

二阶的OLL并不是很多有如下几种,公式都很顺手:

第三步 整体换角(XLL)

这一步里,观察的速度是最重要的,这里不象三阶,只需判断一层,需要同时判断上下两层,不过这一步的时候PLL只有三大种情况,非常好判断,主要是观察相邻的色块。

上下两层的对角换

判断技巧: 整个魔方分为上下两层。然后上下两层均无相同色在一起者。

上层前两邻角 下层对角

判断技巧: 整个魔方分上下两层。只有上面一层有两个相同的色拼在一起 如果是下面一层拼在了一起就立刻把整个魔方翻个180度。

上下层均只换前面的两邻角

判断技巧: 整个魔方分两层。两层都有两个相同色拼在一起。 

当然,也许你很运气,(或者是很没运气)在完成两面的时候已经有一面完成,那么还有两种PLL情况: 

好了,现在你手上的二阶已经还原了。多练习就能轻松进10。  

### C++实现二阶魔方还原算法 以下是基于C++的一种可能的二阶魔方还原算法示例代码。该算法通常依赖于状态空间搜索技术,例如广度优先搜索(BFS),因为二阶魔方的状态数相对较少,适合通过暴力搜索找到最优解。 #### 广度优先搜索 (BFS) 的基本原理 广度优先搜索是一种用于图遍历或搜索树结构的方法。它从根节点开始,逐层访问所有相邻节点,直到找到目标状态为止[^1]。对于二阶魔方来说,初始状态可以表示为一个矩阵,而目标状态是一个完全解开的魔方。 ```cpp #include <iostream> #include <queue> #include <unordered_map> #include <vector> using namespace std; // 定义魔方的一个面 struct Cube { vector<vector<int>> faces; // 6个面, 每个面有4个格子 }; // 判断当前状态是否为目标状态 bool isSolved(const Cube& cube) { for (const auto& face : cube.faces) { int first = face[0]; bool allSame = true; for (int i = 1; i < face.size(); ++i) { if (face[i] != first) { allSame = false; break; } } if (!allSame) return false; } return true; } // 执行一次旋转操作 Cube rotate(Cube cube, int moveIndex) { // 假设moveIndex定义了不同的旋转方式 // 此处省略具体旋转逻辑,需根据实际需求填充 return cube; } // BFS求解函数 string solveCube(Cube start) { queue<pair<Cube, string>> q; // 存储当前状态和路径 unordered_map<string, bool> visited; // 记录已访问过的状态 // 将起始状态加入队列 q.push({start, ""}); string initialState = to_string(start); // 转化为字符串形式便于比较 visited[initialState] = true; while (!q.empty()) { pair<Cube, string> current = q.front(); q.pop(); Cube currentState = current.first; string path = current.second; // 如果当前状态已经解决,则返回路径 if (isSolved(currentState)) { return path; } // 遍历所有可能的操作 for (int i = 0; i < 9; ++i) { // 假设有9种基础移动 Cube newState = rotate(currentState, i); string stateStr = to_string(newState); if (visited.find(stateStr) == visited.end()) { visited[stateStr] = true; q.push({newState, path + to_string(i)}); } } } return "No solution found"; } int main() { Cube initialCube; // 初始化初始状态... cout << "Solution moves: " << solveCube(initialCube) << endl; return 0; } ``` 上述代码提供了一个框架来解决问题,其中`rotate`函数的具体实现取决于如何定义魔方的转动规则。此外,为了提高效率,还可以引入启发式方法优化搜索过程[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值