二阶魔方的还原

吐槽一下360图书馆,拷贝一下都要登陆真的难受。下次可以研究爬虫去爬它了。
第一步: 完成一面以此当作底面,假如我们先转红色一面(注意:第一层四个侧面的颜色也要一致)就像下面的样子


第二步 ,完成顶面颜色 把魔方颠倒过来,红色作底面

现在我们 只看魔方顶面 ,会有以下7种情形(假设顶面是橙色,除底面和它相邻的四个侧面的颜色,剩下的一种颜色是顶面颜色),然后对照相应的公式,转一次,顶面就会完成了(注:图形边上一小块颜色表示相应颜色在哪个侧面,这样做是为了让大家容易看清楚)
编号 情形

公式

说明
A1

   2上, A右右, 2下, A右, 2上, A右, 2下

顶面完成
A2

   2下, A右右, 2上, A左, 2下, A左, 2上

顶面完成
A3
   2上, A右右, 2下, A右, 2上, A右, 2下,A左
   2下, A右右, 2上, A左, 2下, A左, 2上
顶面完成
A4    2上, A右右, 2下, A右, 2上, A右, 2下
   2下, A右右, 2上, A左, 2下, A左, 2上
顶面完成
A5    2上, A右右, 2下, A右, 2上, A右, 2下,A右右
   2下, A右右, 2上, A左, 2下, A左, 2上
顶面完成
A6
     2下, A右右, 2上, A左, 2下, A左, 2上,A右
     2下, A右右, 2上, A左, 2下, A左, 2上
顶面完成
A7
  2上, A右右, 2下, A右, 2上, A右, 2下
  2上, A右右, 2下, A右, 2上, A右, 2下
顶面完成
顶面完成

第三步,还原整个魔方 
 
观察魔方有没有颜色相同的一面(只看最上面一层,每个侧面的上二格就可以了),像下面的图示.


 
 让同色的一面面对自己(只看上面一层就可以了,不必麻烦转到四格颜色都一样,转到一样也可以)用公式3 :[2上,后顺,2上,面顺,面顺,2下,后 反,2上,面顺,面顺,2下下]
转一次整个魔方就完成了
如果没有一面同色,那就用相同的公式再转一次就会有一面同色.

到这里整个魔方就拼好了!!!
 
技巧:只要记住三个公式就可以了
公式1,(2上,A右右,2下,A右,2上,A右,2下)
公式2:(2下,A右右,2上,A左,2下,A左,2上)
公式3:(2上,后顺,2上,面顺,面顺,2下,后反,2上,面顺,面顺,2下下)
### C++实现二阶魔方还原算法 以下是基于C++的一种可能的二阶魔方还原算法示例代码。该算法通常依赖于状态空间搜索技术,例如广度优先搜索(BFS),因为二阶魔方的状态数相对较少,适合通过暴力搜索找到最优解。 #### 广度优先搜索 (BFS) 的基本原理 广度优先搜索是一种用于图遍历或搜索树结构的方法。它从根节点开始,逐层访问所有相邻节点,直到找到目标状态为止[^1]。对于二阶魔方来说,初始状态可以表示为一个矩阵,而目标状态是一个完全解开的魔方。 ```cpp #include <iostream> #include <queue> #include <unordered_map> #include <vector> using namespace std; // 定义魔方的一个面 struct Cube { vector<vector<int>> faces; // 6个面, 每个面有4个格子 }; // 判断当前状态是否为目标状态 bool isSolved(const Cube& cube) { for (const auto& face : cube.faces) { int first = face[0]; bool allSame = true; for (int i = 1; i < face.size(); ++i) { if (face[i] != first) { allSame = false; break; } } if (!allSame) return false; } return true; } // 执行一次旋转操作 Cube rotate(Cube cube, int moveIndex) { // 假设moveIndex定义了不同的旋转方式 // 此处省略具体旋转逻辑,需根据实际需求填充 return cube; } // BFS求解函数 string solveCube(Cube start) { queue<pair<Cube, string>> q; // 存储当前状态和路径 unordered_map<string, bool> visited; // 记录已访问过的状态 // 将起始状态加入队列 q.push({start, ""}); string initialState = to_string(start); // 转化为字符串形式便于比较 visited[initialState] = true; while (!q.empty()) { pair<Cube, string> current = q.front(); q.pop(); Cube currentState = current.first; string path = current.second; // 如果当前状态已经解决,则返回路径 if (isSolved(currentState)) { return path; } // 遍历所有可能的操作 for (int i = 0; i < 9; ++i) { // 假设有9种基础移动 Cube newState = rotate(currentState, i); string stateStr = to_string(newState); if (visited.find(stateStr) == visited.end()) { visited[stateStr] = true; q.push({newState, path + to_string(i)}); } } } return "No solution found"; } int main() { Cube initialCube; // 初始化初始状态... cout << "Solution moves: " << solveCube(initialCube) << endl; return 0; } ``` 上述代码提供了一个框架来解决问题,其中`rotate`函数的具体实现取决于如何定义魔方的转动规则。此外,为了提高效率,还可以引入启发式方法优化搜索过程[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值