M层

M层SQL语句用预处理字符校验合理
博客指出在M层使用SQL语句时,采用预处理字符校验是比较合理的做法,强调了这种方式在信息技术领域数据库操作中的合理性。
M层sql语句用预处理字符校验比较合理
<think> 首先,用户的问题是关于计算一个具有n个节点的二叉树在第m最多有多少个节点的算法。输入格式是:第一行是T,表示测试数据的组数,然后是T行,每行有两个整数n和m。根节点是第0。输出每个测试用例的第m最多节点个数。 关键点: - 我们需要找到第m的最大可能节点数。 - 这涉及到二叉树的结构,特别是完全二叉树或满二叉树,因为它们可以最大化节点数在特定。 在二叉树中,第m的最大节点数是 \(2^m\),因为在一个完全二叉树中,每一都尽可能填满,直到最后一。但在一个总节点数为n的二叉树中,第m的最大节点数受限于n和m。 回忆二叉树的性质: - 第i最多有 \(2^i\) 个节点(i从0开始)。 - 深度为k的二叉树最多有 \(2^{k+1} - 1\) 个节点(因为根是深度0)。 对于第m,最大节点数是 \(2^m\),但前提是该存在且节点数足够。 然而,如果n很小,可能达不到 \(2^m\) 个节点。例如,如果m很大,但n很小,第m可能没有节点。 所以,我们需要考虑两种情况: 1. 如果n不足以到达第m,那么第m节点数为0。 2. 否则,第m最多有 min(\(2^m\), 剩余的节点数) 个节点。 但更精确地说,我们需要计算从根到第m-1所需的节点数,然后剩余的节点可以分配到第m。 在二叉树中: - 深度从0到k-1的最多有 \(2^k - 1\) 个节点。 - 深度k的最大节点数是 \(2^k\)。 但这里m是数,从0开始。 所以: - 前m(从0到m-1)最多需要 \(2^m - 1\) 个节点。 - 证明:前m节点数最大是 \(\sum_{i=0}^{m-1} 2^i = 2^m - 1\)。 然后,总节点n中减去前m所需的节点数,剩下的节点可以放在第m。 但第m最多可以容纳 \(2^m\) 个节点。 所以: 让 min_nodes_before = \(2^m - 1\) // 前m最小需要的节点数来支持第m?不,是最大可能节点数。 为了第m存在,n必须至少为 min_nodes_before + 1,因为至少有一个节点在第m。 但为了最大化第m节点数,我们假设前m-1是满的,这样第m可以有尽可能多的节点。 设 full_nodes_before = \(2^m - 1\) // 深度从0到m-1的节点总数,如果满。 如果 n <= full_nodes_before,那么第m没有节点,输出0。 否则,剩余的节点是 remaining = n - full_nodes_before。 第m最多可以容纳 max_at_level = \(2^m\) 个节点。 所以,第m最多有 min(remaining, max_at_level) 个节点。 但 remaining 是剩余节点数,这些节点可以放在第m,但不超过第m的容量 \(2^m\)。 是的,所以公式是: 如果 n <= \(2^m - 1\),则 max_nodes_at_m = 0 否则 max_nodes_at_m = min( n - (2^m - 1) , 2^m ) 在计算时,\(2^m\) 可能很大,但n和m是输入,我们需要处理可能的边界。 例如: - n=1, m=0: 前0节点数?0是根。full_nodes_before = 2^0 - 1 = 0?等一下。 定义清楚: - m 是目标,从0开始。 - 前m:包括0到m-1?不,是从0到depth。 前k0到k-1)有最多 \(\sum_{i=0}^{k-1} 2^i = 2^k - 1\) 个节点。 对于第m,为了它存在,节点必须足够覆盖到第m。 节点数到第m(包括m)的最大值是 \(\sum_{i=0}^{m} 2^i = 2^{m+1} - 1\)。 但为了最大化第m节点数,我们最小化前m-1的节点数,但为了支持第m,前m-1必须至少有一些节点。 在完全二叉树中,为了最大化第m节点数,我们让前m-1尽可能少,但又能支持第m满。 实际上,为了第m有节点,前m-1必须有足够的节点来形成路径。 但最小节点数前m-1是m,因为每至少一个节点(在路径中),但为了最大化第m,我们假设前m-1是满的,这样第m可以容纳更多节点。 是的,标准方法是:前m-10到m-2)满时,有 \(2^{m-1} - 1\) 个节点?等一下。 设: - 0:1 节点 - 1:2 节点 - ... - m-1: \(2^{m-1}\) 节点?不。 索引 i 有最多 \(2^i\) 节点。 所以,从0到 k-1 有最多 \(\sum_{i=0}^{k-1} 2^i = 2^k - 1\) 个节点。 对于第m: - 前m0到m-1)有最多 \(2^m - 1\) 个节点。 - 第m本身最多有 \(2^m\) 个节点。 但当我们说“前m”,通常包括0到m-1。 在我们的案例中: - 让 k = m // 目标 - 节点用于0到k-1:最多 full_nodes_before_k = \(2^k - 1\) // 这覆盖0到k-1 然后,对于第k,如果 n <= full_nodes_before_k,那么第k没有节点。 否则,剩余的节点 remaining = n - full_nodes_before_k 可以分配到第k,但第k最多容纳 \(2^k\) 节点,所以 max_at_k = min(remaining, \(2^k\) ) 在公式中,k 是 m。 所以: full_before = (1 << m) - 1 // 计算 2^m - 1,使用位运算避免溢出?但在代码中,我们需要处理大数?用户没说范围,但假设在int范围内。 如果 n <= full_before: result = 0 否则: remaining = n - full_before max_at_level = 1 << m // 2^m result = min(remaining, max_at_level) 但等一下,full_before 是0到m-1的节点数,对于第m,我们需要确保前m足以支持第m。 在上面的逻辑中,如果 n <= full_before,它意味着所有 n 个节点都在第0到m-1,所以第m为0。 如果 n > full_before,那么有节点在第m或更高,但当我们在第m放节点时,它们最多可以放 \(2^m\) 个,但 remaining 可能包括更高的节点,但为了最大化第m,我们应尽可能多地将节点放在第m,而不放更高,因为更高对第m计数无贡献。 在二叉树中,为了最大化第m节点数,我们应该让树尽可能浅,但前m-1满,然后第m放尽可能多节点,不留更高。 是的,因为如果放更高,那些节点会占用额外空间,但不增加第m节点数。所以,最优是前m-1满,然后第m放 min(remaining, 2^m) 节点,剩余节点忽略或假设不放,但为了最大第m,我们只放第m,不放更高。 在计算 remaining = n - full_before,然后 min(remaining, 2^m) 就是第m最大节点数,因为剩余节点可以全放第m,如果空间允许。 但第m最多容纳 2^m 节点,所以是的。 例子: 假设 n=7, m=1 full_before = 2^1 - 1 = 2-1=1 // 0的节点 remaining =7-1=6 max_at_level =2^1=2 所以 min(6,2)=2 对于m=1,第1最多2节点,总节点7:0:1,1:2,2:4,但第1最多2,正确。 另一个例子:n=3, m=1 full_before=1 remaining=3-1=2 min(2,2)=2 树可以是根和两个子节点。 n=3, m=0 full_before for m=0: 2^0 -1 =1-1=0? 等一下。 问题:当 m=0。 对于 m=0,第0。 前m:对于 m=0,前00之前?没有。 full_before = 2^m -1 = 2^0 -1 =0 如果 n <=0,但n至少1吧?输入n节点。 如果 n <= full_before =0, 但 n>=1, 所以 n>0, 因此 remaining=n-0=n max_at_level=2^0=1 result=min(n,1) 所以对于 m=0,总是1,如果n>=1。 正确,根节点。 另一个边界:n=1,m=1 full_before=2^1 -1=1 n=1 <=1, so result=0 是的,第1没有节点。 n=1,m=0: full_before=0, n>0, remaining=1, min(1,1)=1 好。 另一个例子:n=5, m=1 full_before=1 (0) remaining=4 max_at_level=2 result=min(4,2)=2 树:0:1,1:2节点,2:2节点(如果完全),但第1最多2。 n=5, m=2 first, full_before for m=2: 2^2 -1=4-1=3? 0到1:最多3节点(0:1,1:2) full_before = 2^m -1, for m=2, 2^2 -1=3 如果 n<=3, result=0 for m=2 但 n=5>3, so remaining=5-3=2 max_at_level=2^2=4 min(2,4)=2 所以第2最多2节点。 在完全二叉树中,它可以是0:1,1:2,2:2(左两个孩子或右两个孩子),是的。 如果放更多在2,但n=5,只能放2在2,如果1满。 max是2。 另一个例子:n=10, m=2 full_before=2^2 -1=3 remaining=7 max_at_level=4 result=min(7,4)=4 所以第2最多4节点。 n=10, 深度3: 0:1,1:2,2:4,3:3, 但第2有4个。 是的。 如果 m 很大,例如 n=10, m=4 full_before=2^4 -1=15 n=10<15, 所以 result=0 因为第4不存在。 好。 但在公式中,2^m 可能很大,如果 m 很大,但在编程中,我们需要处理。 在输入中,m 可能达到,例如,在二叉树中,深度最多是 n,但 2^m 可能指数增长。 在代码中,如果 m 很大,比如 m>=31 或 63,取决于整数大小,2^m 会溢出。 但用户没有指定范围,所以我们需要处理边界。 在问题中,输出是节点个数,所以如果 m 很大,且 n 小,输出 0。 在计算 full_before = 2^m -1,如果 m 很大,2^m -1 可能溢出。 例如,在 C++ 中,int 是 32 位,2^31 是 2147483648,所以对于 m>30,可能会溢出。 但我们需要处理溢出情况。 同样,在输出中,结果是整数。 策略: - 如果 m 很大,比如 m > 31(对于 int),那么 2^m 很大,但既然 n 是有限的,很可能 n < 2^m -1,所以 result=0。 但在计算中,我们不能直接计算 2^m 如果 m 很大。 所以,我们需要聪明地处理。 情况: 1. 如果 m == 0,那么最多节点数:如果 n >= 1,则为 1,否则为 0。但 n 是节点数,可能 n >= 1,但输入 n 可能为 0?题目说的是具有 n 个节点的二叉树,所以可能 n >= 1,但为安全起见,检查 n。 输入:每行有 n 和 m,可能 n >= 1,m >= 0。 但为安全起见,在代码中处理。 对于 m=0:结果应为 min(n, 1) 但根据公式,full_before = 2^0 -1 = 0,剩余 = n,max_at_level = 1,最小值为 min(n,1),所以如果 n=0,结果为 0,否则为 1。但可能 n >= 1。 类似地,对于 m>=1。 处理大 m 的方法: 如果 m 很大,例如 m > 100,但 n 是有限的,比如 n <= 10^6,那么对于 m 满足 2^m > n + 某个值,但 full_before = 2^m -1,因此如果 2^m > n,那么 n <= full_before 仅当 2^m -1 >= n,但由于 2^m 很大,成立。 实际上,对于给定的 n,树的最大深度大约是 floor(log2(n)) + 某些值,但粗略来说深度 d 满足 2^d <= n < 2^{d+1},大致如此。 所以如果 m > floor(log2(n)) + 1,那么第 m 可能不存在。 更精确地说,具有 n 个节点的二叉树的最小深度是当树是平衡树时为 floor(log2(n)),但最大深度是 n(退化)。 但第 m 存在的条件是深度至少为 m。 深度至少为 m 的最小 n 是 m+1(线性树),但为了最大化第 m 的节点数,我们需要考虑在可能的情况下填满该。 在算法中,我们可以这样处理: - 如果 m 非常大,比如 m > 1000 或 m > 60(对于 64 位),那么如果 n <= 2^m -1,但如果不计算 2^m,我们如何知道? 注意到当 m 很大时,2^m 增长非常快。 我们可以找到最大可能的 m,使得树至少有深度 m。 但具有 n 个节点的树的最大深度是 n(链),所以如果 m <= n,第 m 可能存在,但节点的数量可能很少。 但我们的目标是该的最大节点数。 为了计算,我们需要计算 full_before = 2^m -1。 在代码中,我们可以使用位操作,但需要处理溢出情况。 由于输出最多为 n,并且 n 是整数,我们可以处理如下: - 如果 m 很小,就计算 2^m。 - 如果 m 很大,那么 2^m -1 很大,因此如果 n < 2^m,但等等。 实际上,对于 m 满足 2^m > n(大约),但需要准确。 由于 2^m 呈指数增长,而 n 是有限的,对于给定的 n,存在一个最大 m,使得 2^m <= n + full_before 或类似的条件。 但更容易注意到:如果 m > 0 且 2^{m-1} > n / 2 或类似的条件。 但也许在代码中,我们可以使用对数,但整数运算更好。 一个更好的方法:如果 m 很大,使得 2^m > INT_MAX,但由于 full_before = 2^m -1,如果 m 很大,它将会溢出。 所以,在代码中,我们需要在计算之前检查 m 是否太大。 例如,在 C++ 中,对于 int n,如果 m > 30,那么 2^m > 2^31,因此对于有符号 int 来说,2^m -1 是负数?如果 m>31,2^31 是 2147483648,对于 int 是负数,但由于 n 是正数,n <= full_before 可能为假,但其实对于大的 m,n <= full_before 应该为真。 问题:溢出。 如果 m 很大,2^m -1 溢出为负数,而 n 是正数,因此 n <= full_before(负数)为假,那么我们会进入 else 分支,但 remaining = n - full_before 会变成一个很大的正数,并且 min(remaining, 2^m) 也是错的。 所以要处理溢出情况。 方法: 首先,检查是否 m 非常大,比如 m > 60,那么由于 n 是有限的,第 m 不可能有节点,输出 0。 但 m 和 n 是输入,所以我们需要找出何时该不存在。 第 m 存在的必要条件是树的最大深度至少为 m。 具有 n 个节点的树的最小最大深度是 ceil(log2(n+1)) 或类似的值,但最大深度最多为 n。 但最大深度至少为 m 的条件是 n >= m+1(对于线性树)。 但为了最大化第 m 的节点数,我们需要前 m-1 是满的,所以如果 n < 2^{m-1},那么甚至无法填满前 m-1 ,但在我们的公式中,full_before 是针对前 m ?等等。 回顾一下。 在我们的公式中: full_before = 2^m - 1 // 第 0 到第 m-1 的最大节点数?对于第 m ,full_before 是第 0 到第 m-1 的节点数。 第 0 到第 m-1 :最多节点数为 full_before = 2^m - 1 如果 n <= full_before,则第 m 没有节点,输出 0。 否则,第 m 最多可以有 min(n - full_before, 2^m) 现在,full_before = 2^m - 1 如果 m 很大,2^m -1 可能溢出。 但我们可以这样计算:如果 m 很大,2^m > n + 2^m -1 之类的,但不行。 注意到对于 m >= 1,(2^m - 1) >= m * 2 或类似的,但更简单的做法是:如果 m 很大,2^m -1 很大,因此对于固定的 n,存在某个 M,使得当 m > M 时,n <= 2^m -1。 例如,2^m -1 >= n 当且仅当 2^m >= n+1。 所以,如果 2^m >= n+1,那么如果 n <= 2^m -1,但 2^m >= n+1 意味着 2^m -1 >= n,是的,所以 n <= 2^m -1。 反过来,如果 2^m < n+1,那么可能 n > 2^m -1,但也可能 n <= 2^m -1。 但 2^m < n+1 并不意味着 n > 2^m -1;例如,n=3,m=1:2^1=2 < 4,但 2^1 -1=1,n=3>1。 但 2^m < n+1 并不直接相关。 在代码中,我们可以检查是否 m 太大,以至于 2^m > MAX_N 或类似的情况。 但 MAX_N 未给出。 由于输出是节点数,并且对于大的 m,输出为 0,所以我们可以这样处理: - 如果 m == 0,则返回 min(n, 1) - 否则,如果 m 很大,比如 m > 31,那么检查 n 是否小于 2^{m},但无需计算。 更简单的方法:计算前 m 所需的最小节点数,但那只是 m+1(对于线性树),但为了最大值,情况不同。 对于大的 m,如果 n <= 2^m -1,则输出为 0,但如果不计算,我们如何知道? 由于 2^m 增长快,在代码中,我们可以使用对数:如果 m > floor(log2(n)) + 1,但 log2(n) 可能不是整数。 例如,n=10,log2(10)≈3.32,floor=3,m 最大为深度?具有 n 个节点的满二叉树的深度是 floor(log2(n)),但最大深度是 n-1。 但第 m 存在的最大深度至少为 m。 为了安全地计算而不溢出: 在代码中,我们可以使用 long long 如果可用的话,但用户没有指定语言,不过在引用中用了 C++,所以也许在 C++ 中使用 long long。 但输入 T 组数据,每组 n 和 m,所以对于每个查询,我们可以这样计算: - 如果 m == 0: - result = (n >= 1) ? 1 : 0 // 但可能 n>=1 - 否则如果 m 很大: - 但需要定义“很大” 更好的办法是处理计算中的溢出。 在 C++ 中,我们可以写: ```cpp #include <iostream> #include <climits> #include <cmath> using namespace std; int main() { int T; cin >> T; while (T--) { int n, m; cin >> n >> m; if (m == 0) { // 第0,总是1个节点,如果n>=1 cout << (n >= 1 ? 1 : 0) << endl; } else if (m < 0) { // 无效,但假设 m>=0 cout << 0 << endl; } else { // 检查 m 是否太大 if (m > 60) { // 假设 n 不大时,对于 m>60,2^m 很大 cout << 0 << endl; } else { // 计算 full_before = 2^m - 1 long long full_before = (1LL << m) - 1; // 使用 long long 避免溢出 if (n <= full_before) { cout << 0 << endl; } else { long long remaining = n - full_before; long long max_at_level = 1LL << m; // 2^m long long result = min(remaining, max_at_level); cout << result << endl; } } } } return 0; } ``` 在这个代码中,对于 m<=60,我们使用 long long 来计算,以避免溢出。对于 m>60,我们输出 0,因为对于 n 合理的情况,2^m 太大了,但 n 可能很大?如果 n 很大,但 m>60,2^60 是巨大的,所以对于现实中的 n,n <= full_before 成立,因此输出 0 是安全的。 例如,2^60 ≈ 1e18,所以如果 n <= 1e9,n < full_before,因此对于 m>60,输出 0。 在题目中,n 的大小没有说明,但可能 n 是合理的,比如最多 1e9 之类的。 在引用中,例如引用[3] 包含 n 和 m,但没有范围。 为安全起见,在代码中使用 long long 并处理 m 较大的情况。 但在输出中,结果是一个整数,可能很小。 另一个方法:如果对于某些 m,2^m - 1 > LLONG_MAX,但在代码中,如果 m 太大,1LL << m 会是未定义行为,所以我们需要在 m 太大时限制它。 在 C++ 中,位操作在 m 大于类型大小时是未定义行为。 所以在代码中,我们需要设定一个最大 m,比如 60 或 62。 对于 m > 60,无论如何输出 0。 类似于输出。 在用户的问题中,输入输出要求是:输入第一行是 T,然后每行是 n 和 m,输出每个用例第 m 最多节点个数。 在代码中,我们需要输出结果。 现在,在响应中,用户要求提供算法,并且可能需要代码,但指令是回答用户查询,并且用户说“解决”,所以可能提供代码或描述。 用户说:“我想解决关于计算有n个节点的二叉树的第m至多有多少个节点的算法问题”和“包含输入输出要求”,所以可能要提供代码。 在引用中,有代码示例。 而且,指令中说“生成相关问题”,在末尾。 首先,解决算法。 所以,算法是: - 对于每个测试用例: - 如果 m == 0: - 输出 min(n, 1) # 但由于 n >=1,输出 1(如果 n>0) - 否则: - 计算 full_before = (1 << m) - 1,但注意数值范围 - 如果 n <= full_before: - 输出 0 - 否则: - 计算 remaining = n - full_before - max_at_level = 1 << m - 输出 min(remaining, max_at_level) 数值处理:在代码中使用 long long 并限制 m,比如 m <= 60,或者使用对数,但整数更好。 另一个想法:不计算 2^m,但检查是否 2^m > n,但我们需要 full_before。 因为对于 m > 0,如果 n <= 2^{m-1} -1 或类似情况,但不够直接。 我认为使用 long long 并在代码中处理 m 较大的情况是可行的。 现在,对于响应,由于用户提到了引用,但引用是关于二叉树的,不过这个问题是独立的。 用户引用包括: - [1] 二叉树属性:节点数,n0=n2+1,以及完全二叉树示例。 - [2] 和 [3] 关于子树节点计数,但不同的问题。 - [4] 后序遍历查找路径。 - [5] 二叉树深度计算。 但这个问题不同,所以我可以直接解决。 在响应中,应该提供代码或描述。 用户说“解决”,所以可能提供代码。 输入输出格式:输入第一行 T,然后 T 行,每行 n m。 输出每个用例的整数。 在代码中,我将用 C++ 编写,如引用所示。 处理大 m 的情况:设置最大 m 为 62,例如。 在 C++ 中,1LL << m,当 m > 63 时对于 long long 是未定义行为,因此检查 m 是否大于 62。 代码: ```cpp #include <iostream> #include <algorithm> #include <climits> using namespace std; int main() { int T; cin >> T; while (T--) { long long n, m; // 使用 long long 防止 n 很大 cin >> n >> m; // 如果 m 为负数,无效,设为 0 if (m < 0) { cout << 0 << endl; continue; } // 对于第 0 if (m == 0) { if (n >= 1) { cout << 1 << endl; } else { cout << 0 << endl; } continue; } // 检查 m 是否太大,比如 m > 60 if (m > 60) { // 2^60 约为 1e18,对于 long long 是安全的 cout << 0 << endl; continue; } // 计算第 0 到第 m-1 的满节点数 long long full_before = (1LL << m) - 1; // 2^m - 1 // 如果 n 小于或等于前 m 的节点数,则第 m 没有节点 if (n <= full_before) { cout << 0 << endl; } else { long long remaining = n - full_before; long long max_at_level = 1LL << m; // 2^m long long result = min(remaining, max_at_level); cout << result << endl; } } return 0; } ``` 在这个代码中,我使用了 long long 来表示 n 和 m,但 m 是数,可能不会太大,不过为了安全起见。 对于大的 m,比如 m>60,输出 0。 对于 m=0,单独处理。 现在,在响应中,我需要说明算法并添加代码。 另外,在末尾生成相关问题。 首先,组织响应。 用户要求中文,所以用中文回复。 结构: - 解释算法 - 提供代码 - 相关问题 </think> 根据您的问题描述,我将解决计算具有 n 个节点的二叉树在第 m 最多节点数的算法问题。输入格式为:第一行为整数 T(测试用例组数),接下来每行包含两个整数 n(节点总数)和 m(目标,根节点为第 0 )。输出每个测试用例第 m 的最大节点个数。 ### 算法说明 在二叉树中,第 m 的最大节点数取决于树的结构。为了最大化第 m 的节点数,树应尽可能接近完全二叉树,即前 m-1 完全填满(节点数达到最大值),然后第 m 放置尽可能多的剩余节点: 1. **前 m-1 的最大节点数**: 0 到 m-1 最多可容纳 \(2^m - 1\) 个节点(因为 i 最多有 \(2^i\) 节点,求和为几何级数)。 2. **第 m 的容量**:该最多可容纳 \(2^m\) 个节点。 3. **关键判断**: - 如果 \(n \leq 2^m - 1\),所有节点都在前 m-1 或更浅,第 m 无节点(输出 0)。 - 否则,剩余节点数 \( \text{remaining} = n - (2^m - 1) \) 可分配到第 m ,但受限于该容量,因此最大节点数为 \(\min(\text{remaining}, 2^m)\)。 4. **边界处理**: - 当 \(m = 0\)(根):输出 1(如果 \(n \geq 1\)),否则 0。 - 当 \(m\) 过大(如 \(m > 60\)):\(2^m\) 可能溢出或 n 无法支持该,直接输出 0(因为实际节点数不足以覆盖该)。 5. **数值安全**:在代码中使用 `long long` 防止溢出,并处理大 m 情况。 该算法时间复杂度为 \(O(1)\) 每测试用例,高效可靠。 ### 代码实现 以下是 C++ 代码实现,满足输入输出要求。代码使用位运算高效计算 \(2^m\),并处理所有边界情况。 ```cpp #include <iostream> #include <algorithm> using namespace std; int main() { int T; cin >> T; // 读取测试用例组数 while (T--) { long long n, m; cin >> n >> m; // 读取每组n和m // 处理m为负或m=0的情况 if (m < 0) { cout << 0 << endl; } else if (m == 0) { // 第0最多1个节点 cout << (n >= 1 ? 1 : 0) << endl; } else if (m > 60) { // m过大时,第m不可能有节点 cout << 0 << endl; } else { // 计算前m0到m-1)最大节点数: 2^m - 1 long long full_before = (1LL << m) - 1; if (n <= full_before) { // 节点不足以覆盖到第m cout << 0 << endl; } else { long long remaining = n - full_before; // 可分配到第m的节点 long long max_at_level = 1LL << m; // 第m容量: 2^m long long result = min(remaining, max_at_level); cout << result << endl; } } } return 0; } ``` ### 输入输出示例 **输入示例**: ``` 3 // T=3组测试数据 7 1 // n=7, m=1 3 1 // n=3, m=1 10 2 // n=10, m=2 ``` **输出示例**: ``` 2 // n=7,m=1: 第1最多2节点 (e.g., 完全二叉树0:1, 1:2) 2 // n=3,m=1: 第1最多2节点 (e.g., 根节点和两个子节点) 4 // n=10,m=2: 第2最多4节点 (e.g., 0:1, 1:2, 2:4) ``` ### 解释 - **示例分析**: - 对于 `n=7, m=1`:前 m-1 0)最大节点数为 \(2^1 - 1 = 1\),剩余节点 \(7 - 1 = 6\),第 1 容量为 \(2^1 = 2\),因此 \(\min(6, 2) = 2\)。 - 其他用例类似计算。 - **边界安全**:代码使用 `long long` 避免溢出,对大 m(如 \(m > 60\))直接输出 0,因为 \(2^{60}\) 巨大(约 \(10^{18}\)),实际 n 无法支持该节点。 该算法基于二叉树节点最大化原理,确保结果正确[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值