文|Seraph
01 | 线性代数
一、矩阵及其运算合集
- 矩阵及其运算。
方阵、行向量、列向量、两个矩阵相等、零矩阵 - 矩阵是一种阵列的表示:图像、线性变换等。
单位矩阵、对角矩阵diag - 矩阵的乘法不满足交换律。
- 矩阵没有除法,就是矩阵的逆。
- 方阵的迹
t r ( A ) = ∑ i a i i tr(A) = \sum_{i}a_{ii} tr(A)=i∑aii - 证明
t
r
(
A
B
)
=
t
r
(
B
A
)
tr(AB) = tr(BA)
tr(AB)=tr(BA),假设
A
m
∗
n
A_{m*n}
Am∗n,
B
n
∗
m
B_{n*m}
Bn∗m
t r ( A B ) = t r ( C ) = ∑ i m c i i = ∑ i m ∑ j n a i j b j i tr(AB) = tr(C)=\sum_i^mc_{ii}=\sum_i^m\sum_j^na_{ij}b_{ji} tr(AB)=tr(C)=i∑mcii=i∑mj∑naijbji
t r ( B A ) = t r ( D ) = ∑ i n d i i = ∑ i n ∑ j m b i j a j i tr(BA) =tr(D)=\sum_i^nd_{ii}=\sum_i^n\sum_j^mb_{ij}a_{ji} tr(BA)=tr(D)=i∑ndii=i∑nj∑mbijaji - 矩阵的转置
( A T ) T = A (A^T)^T=A (AT)T=A
( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
( λ A ) T = λ A T (\lambda A)^T=\lambda A^T (λA)T=λAT
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT - 对称矩阵 A T = A A^T=A AT=A(A为方阵)