c++ 中main(int argc,char **argv)函数各参数的意义

本文解释了argc和argv在程序中的作用。argc表示程序启动时参数的数量加一,包含程序名。argv是一个字符串数组,包含了所有传入的参数,包括程序名。例如,使用telnet命令连接到本地主机的80端口时,argc为3,argv数组包含telnet、127.0.0.1和80。

argc的值是操作系统启动此程序的时候,赋给此程序的参数个数+1.
如果你启动的时候,没有带参数,那么这个argc的值就是1.

举个例子:
在终端下调用程序telnet并带有两个参数,在命令行下执行的命令就是:
telnet 127.0.0.1 80
telnet程序后面有127.0.0.1和80两个字符串,这两个字符串作为telnet的参数来启动telnet程序.在telnet程序的内部(telnet程序的main函数里);argc的值就是3(程序名计数为1).argv是一个字符串的数组,分别指向这三个数据(程序名是第一个数据).

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值