CDMA向量内积的计算
在平面坐标上,有A点和B点,A点坐标是(x1,y1)(x_{1}, y_{1})(x1,y1),B点坐标是(x2,y2)(x_{2}, y_{2})(x2,y2)。

则
AB→=(x2−x1,y2−y1)\overrightarrow{AB}=(x_{2}-x_{1},y_{2}-y_{1})AB=(x2−x1,y2−y1)
那么AB→\overrightarrow{AB}AB向量的模是
∣AB∣=(x2−x1)2+(y2−y1)2\left|AB\right|=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}∣AB∣=(x2−x1)2+(y2−y1)2
即是线段AB的长度。
若A点在原点,即x1=0x_{1}=0x1=0,y1=0y_{1}=0y1=0,则AB→=(x2,y2)\overrightarrow{AB}=(x_{2},y_{2})AB=(x2,y2),如图2所示。

三维空间的向量就是在三维空间的两个点之间的带有方向和大小的量。在三维空间中有A和B点两,A点坐标是(x1,y1,z1)(x_{1}, y_{1},z_{1})(x1,y1,z1),B点坐标是(x2,y2,z2)(x_{2}, y_{2},z_{2})(x2,y2,z2)。则
AB→=(x2−x1,y2−y1,z2−z1)\overrightarrow{AB}=(x_{2}-x_{1},y_{2}-y_{1},z_{2}-z_{1})AB=(x2−x1,y2−y1,z2−z1)
其他同理。
如图3所示,在二维平面上有两个向量a⃗=(a1,a2)\vec{a}=(a_{1},a_{2})a=(a1,a2),b⃗=(b1,b2)\vec{b}=(b_{1},b_{2})b

最低0.47元/天 解锁文章
2453

被折叠的 条评论
为什么被折叠?



