CDMA向量内积的计算

CDMA向量内积的计算

在平面坐标上,有A点和B点,A点坐标是 ( x 1 , y 1 ) (x_{1}, y_{1}) (x1,y1),B点坐标是 ( x 2 , y 2 ) (x_{2}, y_{2}) (x2,y2)

Alt

图2


A B → = ( x 2 − x 1 , y 2 − y 1 ) \overrightarrow{AB}=(x_{2}-x_{1},y_{2}-y_{1}) AB =(x2x1,y2y1)
  那么 A B → \overrightarrow{AB} AB 向量的模是
   ∣ A B ∣ = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \left|AB\right|=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2} AB=(x2x1)2+(y2y1)2
即是线段AB的长度。
  若A点在原点,即 x 1 = 0 x_{1}=0 x1=0 y 1 = 0 y_{1}=0 y1=0,则 A B → = ( x 2 , y 2 ) \overrightarrow{AB}=(x_{2},y_{2}) AB =(x2,y2),如图2所示。

图2

三维空间的向量就是在三维空间的两个点之间的带有方向和大小的量。在三维空间中有A和B点两,A点坐标是 ( x 1 , y 1 , z 1 ) (x_{1}, y_{1},z_{1}) (x1,y1,z1),B点坐标是 ( x 2 , y 2 , z 2 ) (x_{2}, y_{2},z_{2}) (x2,y2,z2)。则
A B → = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) \overrightarrow{AB}=(x_{2}-x_{1},y_{2}-y_{1},z_{2}-z_{1}) AB =(x2x1,y2y1,z2z1)
其他同理。
  如图3所示,在二维平面上有两个向量 a ⃗ = ( a 1 , a 2 ) \vec{a}=(a_{1},a_{2}) =(a1,a2) b ⃗ = ( b 1 , b 2 ) \vec{b}=(b_{1},b_{2}) b =(b1,b2),则内积 a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ cos ⁡ θ ( 1 ) \vec{a} \cdot \vec{b}=\left|\vec{a}\right|\left| \displaystyle\vec{b}\right|\cos\theta\qquad\qquad\qquad\qquad\qquad(1) b = b cosθ(1)

图3

a ⃗ \vec{a} b ⃗ \vec{b} b 夹角为0,则 cos ⁡ θ = 1 \cos\theta=1 cosθ=1
a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ cos ⁡ θ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ( 2 ) \displaystyle\vec{a} \cdot \vec{b}=\left|\vec{a}\right|\left|\vec{b}\right|\cos\theta=\left|\vec{a}\right|\left|\vec{b}\right|\qquad\qquad\quad(2) b = b cosθ= b (2)
由(1)式可得
a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 ( 3 ) \vec{a} \cdot \vec{b}=a_{1}b_{1}+a_{2}b_{2}\qquad\qquad\qquad\qquad\qquad(3) b =a1b1+a2b2(3)

例1

如图4所示,图中有两个向量 a ⃗ \vec{a} b ⃗ \vec{b} b ,A,B,C三点的坐标分别为A(1,2),B(2,4),C(3,1)。则
a ⃗ = ( a 1 , a 2 ) = ( 2 − 1 , 4 − 2 ) = ( 1 , 2 ) \vec{a}=(a_{1},a_{2})=(2-1,4-2)=(1,2) =(a1,a2)=(21,42)=(1,2)
b ⃗ = ( b 1 , b 2 ) = ( 3 − 1 , 1 − 2 ) = ( 2 , − 1 ) \vec{b}=(b_{1},b_{2})=(3-1,1-2)=(2,-1) b =(b1,b2)=(31,12)=(2,1)
所以
a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 = ( 1 × 2 + 2 × ( − 1 ) ) = 0 \vec{a} \cdot \vec{b}=a_{1}b_{1}+a_{2}b_{2}=(1×2+2×(-1))=0 b =a1b1+a2b2=(1×2+2×(1))=0
因此,向量 a ⃗ \vec{a} a b ⃗ \vec{b} b 正交,且两向量垂直。
规格化内积
a ⃗ ⋅ b ⃗ = 1 2 ( a 1 b 1 + a 2 b 2 ) \vec{a} \cdot \vec{b}=\frac12(a_{1}b_{1}+a_{2}b_{2}) b =21(a1b1+a2b2)
而规格化内积
a ⃗ ⋅ a ⃗ = 1 2 ( a 1 a 1 + a 2 a 2 ) = 1 2 ( 1 × 1 + 2 × 2 ) = 2.5 ≠ 1 \vec{a} \cdot \vec{a}=\frac12(a_{1}a_{1}+a_{2}a_{2})=\frac12(1×1+2×2)=2.5≠1 a =21(a1a1+a2a2)=21(1×1+2×2)=2.5=1
假设码片向量是2维的,这个2维的向量是不能作为发送站的码片向量的。

图4

当两个m维向量有两个向量 a ⃗ = ( a 1 , a 2 , ⋯ a m ) \vec{a}=(a_{1},a_{2},{\cdots}a_{m}) =(a1,a2,am) b ⃗ = ( b 1 , b 2 , ⋯ b m ) \vec{b}=(b_{1},b_{2},{\cdots}b_{m}) b =(b1,b2,bm),则规格化内积为
a ⃗ ⋅ b ⃗ = 1 m ∑ i = 0 m a i b i = 1 m ( a 1 b 1 + a 2 b 2 + ⋯ + a m b m ) ( 4 ) \vec{a} \cdot \vec{b}=\frac1m\displaystyle \sum^{m}_{i=0}{a_{i}b_{i}}=\frac1m(a_{1}b_{1}+a_{2}b_{2}+\cdots+a_{m}b_{m})\qquad\qquad\qquad(4) b =m1i=0maibi=m1(a1b1+a2b2++ambm)(4)

例2在这里插入图片描述

S站的码片序列S是(-1 -1 -1 +1 +1 -1 +1 +1)
T站的码片序列T是(-1 -1 +1 -1 +1 +1 +1 -1)
当数据码元比特为1时,发送信号 S x + T x S_{x}+T_{x} Sx+Tx是(-2 -2 0 0 2 0 2 0)
因为 S → ⋅ ( S x → + T x → ) = S → ⋅ S x → + S → ⋅ T x → \overrightarrow{S}\cdot (\overrightarrow{S_{x}}+\overrightarrow{T_{x}})=\overrightarrow{S}\cdot \overrightarrow{S_{x}}+\overrightarrow{S}\cdot \overrightarrow{T_{x}} S (Sx +Tx )=S Sx +S Tx
且规格化内积
S → ⋅ S x → = 1 8 [ ( − 1 ) × ( − 1 ) + ( − 1 ) × ( − 1 ) + ( − 1 ) × ( − 1 ) + ( + 1 ) × ( + 1 ) + ( + 1 ) × ( + 1 ) + ( − 1 ) × ( − 1 ) + ( + 1 ) × ( + 1 ) + ( + 1 ) × ( + 1 ) ] = 1 \overrightarrow{S}\cdot \overrightarrow{S_{x}}=\frac{1}{8}[(-1)×(-1)+(-1)×(-1)+(-1)×(-1)+(+1)×(+1)+ (+1)×(+1)+(-1)×(-1)+(+1)×(+1)+(+1)×(+1)]=1 S Sx =81[(1)×(1)+(1)×(1)+(1)×(1)+(+1)×(+1)+(+1)×(+1)+(1)×(1)+(+1)×(+1)+(+1)×(+1)]=1
规格化内积
S → ⋅ T x → = 1 8 [ ( − 1 ) × ( − 1 ) + ( − 1 ) × ( − 1 ) + ( − 1 ) × ( + 1 ) + ( + 1 ) × ( − 1 ) + ( + 1 ) × ( + 1 ) + ( − 1 ) × ( + 1 ) + ( + 1 ) × ( + 1 ) + ( + 1 ) × ( − 1 ) ] = 0 \overrightarrow{S}\cdot \overrightarrow{T_{x}}=\frac{1}{8}[(-1)×(-1)+(-1)×(-1)+(-1)×(+1)+(+1)×(-1)+(+1)×(+1)+(-1)×(+1)+(+1)×(+1)+(+1)×(-1)]=0 S Tx =81[(1)×(1)+(1)×(1)+(1)×(+1)+(+1)×(1)+(+1)×(+1)+(1)×(+1)+(+1)×(+1)+(+1)×(1)]=0
所以
S → ⋅ ( S x → + T x → ) = S → ⋅ S x → + S → ⋅ T x → = 1 + 0 = 1 \overrightarrow{S}\cdot (\overrightarrow{S_{x}}+\overrightarrow{T_{x}})=\overrightarrow{S}\cdot \overrightarrow{S_{x}}+\overrightarrow{S}\cdot \overrightarrow{T_{x}}=1+0=1 S (Sx +Tx )=S Sx +S Tx =1+0=1
所以S站发出的数据码元为1。
若计算的结果为-1,则说明S站发出的数据码元为0,若计算结果为0,则说明S站没有发送数据。

例3

在这里插入图片描述

  • 31
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
CDMA(Code Division Multiple Access,中文又称为码分多址)是一种无线通信技术,它的主要特点是在同一频段和时间段上,通过使用不同的扩频码,将多个用户的信号叠加在一起进行传输,从而实现信号的分离。 CDMA通信的计算主要涉及到扩频码的生成与解码。在发送端,首先需要根据用户的特定序列,生成扩频码。扩频码是一种长序列的二进制码,用来对用户的数据进行扩频处理。扩频处理是通过将用户数据与扩频码进行逻辑运算,将其从低速数据转换为高速宽带信号。生成扩频码的计算是通过对特定算法进行复杂性运算,从而得到满足要求的扩频码。 在接收端,需要对接收到的信号进行解码。解码是通过将接收到的扩频码与已知的扩频码进行相关运算,从而恢复出用户的原始数据。解码算法需要根据传输中使用的扩频码来计算相关性,当相关性达到一定的阈值时,就能够判断出扩频码的存在,从而解码出原始数据。 除了扩频码的生成与解码计算外,CDMA计算还涉及到功率控制、信道编码等方面。在CDMA系统中,由于同一频段上可能存在多个用户同时传输信息,为了避免互相干扰,需要对不同用户的信号进行功率控制,通过动态调整每个用户的发送功率,使它们在接收端的功率接近。此外,为了增加信号的可靠性,还需要使用信道编码来进行差错校正。 总的来说,CDMA计算涉及到扩频码的生成与解码,功率控制以及信道编码等方面,这些计算主要通过特定的算法和数学模型来实现。这些计算使得CDMA在多用户的无线通信中可以实现高效的传输和接收。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值