CDMA向量内积的计算

CDMA向量内积的计算

在平面坐标上,有A点和B点,A点坐标是(x1,y1)(x_{1}, y_{1})(x1,y1),B点坐标是(x2,y2)(x_{2}, y_{2})(x2,y2)

Alt

图2


AB→=(x2−x1,y2−y1)\overrightarrow{AB}=(x_{2}-x_{1},y_{2}-y_{1})AB =(x2x1,y2y1)
  那么AB→\overrightarrow{AB}AB 向量的模是
  ∣AB∣=(x2−x1)2+(y2−y1)2\left|AB\right|=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}AB=(x2x1)2+(y2y1)2
即是线段AB的长度。
  若A点在原点,即x1=0x_{1}=0x1=0y1=0y_{1}=0y1=0,则AB→=(x2,y2)\overrightarrow{AB}=(x_{2},y_{2})AB =(x2,y2),如图2所示。

图2

三维空间的向量就是在三维空间的两个点之间的带有方向和大小的量。在三维空间中有A和B点两,A点坐标是(x1,y1,z1)(x_{1}, y_{1},z_{1})(x1,y1,z1),B点坐标是(x2,y2,z2)(x_{2}, y_{2},z_{2})(x2,y2,z2)。则
AB→=(x2−x1,y2−y1,z2−z1)\overrightarrow{AB}=(x_{2}-x_{1},y_{2}-y_{1},z_{2}-z_{1})AB =(x2x1,y2y1,z2z1)
其他同理。
  如图3所示,在二维平面上有两个向量a⃗=(a1,a2)\vec{a}=(a_{1},a_{2}) =(a1,a2)b⃗=(b1,b2)\vec{b}=(b_{1},b_{2})b

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值