题意分析
一家工厂生产的产品规格分为1×1, 2×2, 3×3, 4×4, 5×5, 6×6,高都是h。工厂要把它们包在6×6×h的包装袋中。工厂想让包装数尽可能少。
一开始把这道题想复杂了,其实只用考虑面积。也就是说物品的高和包装袋的高都是一样的。
自然而然能想到有2种装东西的方案,一种是先装小的,再装大的;另外一种就是先装大的,再装小的。
明显第一种做法不正确。原因是如果先装完小的,那么大的未装满的剩余部分,没有小的来填充,造成了浪费。所以贪心做法应该是后者。
在写程序的时候要注意分类讨论的情况,以及计算的严谨性。
对于6×6,没有办法填充。
对于5×5,只能用1×1的来填充。
对于4×4,先用2×2的来填充,其次剩余的用1×1的填充,
对于3×3,要判断模4余几个。如果剩下3个,新的包装袋还有1个3×3的位置来填充,优先填充2×2,其次填充1×1;剩下2个,新的包装袋有2个3×3的位置来填充,2×2如果够的话能填充3个,1×1能填充6个,如果不够,还是按照2×2的优先,剩下的用1×1的来填;如果剩下1个,道理一样的。
对于2×2,一个新的包装袋能填充9个,有空位子用1×1来填充即可。
对于1×1就没什么好说的了。
其实写起来这道题的其妙写法还是很多的,值得学习。一开始我就是用一大堆ifelse来写的。
具体还是要结合代码细细品味。
代码总览
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int nmax = 7;
int num[nmax];
int main(){
while(scanf("%d %d %d %d %d %d",&num[1],&num[2],&num[3],&num[4],&num[5],&num[6]) != EOF){
if(num[1] == 0 && num[2] == 0 && num[3] == 0 && num[4] == 0 && num[5] == 0 && num[6] == 0) break;
int ans = 0;
ans += num[6];
ans += num[5];
num[1] = max(0,num[1] - 11 * num[5]);
ans += num[4];
if(num[2] < 5*num[4]) num[1] = max(0,num[1]- 4*(5*num[4]-num[2]));
num[2] = max(0, num[2] - 5* num[4]);
ans += (num[3] + 3) / 4;
num[3] %= 4;
int left = 4- num[3];
if(left == 1){
if(num[2] <= 1) num[1] = max(0,num[1]- (9-num[2] * 4));
else num[1] = max(0, num[1] - 5);
num[2] = max(0,num[2]-1);
}else if(left == 2){
if(num[2] <= 3) num[1] = max(0, num[1] - (18 - num[2]*4));
else num[1] = max(0,num[1] - 6);
num[2] = max(0,num[2] - 3);
}else if(left == 3){
if(num[2] <= 5) num[1] = max(0, num[1] - (27 - num[2]*4));
else num[1] = max(0,num[1] - 7);
num[2] = max(0,num[2] - 5);
}
ans += (num[2] + 8) / 9;
num[2] %= 9;
if(num[2]) num[1] = max(0,num[1] - (36-4*num[2]));
ans += (num[1] + 35) / 36;
printf("%d\n",ans);
}
return 0;
}