夺冠|重口音对话语音识别挑战赛k2小试牛刀,智能生活触手可及

小米MITC团队在重口音对话语音识别挑战赛夺冠,借助k2技术实现低字符错误率。k2是新一代Kaldi的核心,提供高效GPU解码和序列建模,有助于构建智能语音系统,降低行业门槛,提升用户体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近日,小米传来好消息~

在Magichub重口音对话语音识别挑战赛中,以小米集团技术委员会简称命名的MITC团队,凭借最低的CER(即Character Error Rate,字符错误率)获得了一等奖。26b15ffb49ffcce55b005f8306266c58.pnga8e296212c226bf05ad18b0589ec381a.pngde51cb7d95cf3363412cf8259a9d6ce9.png10e0d555d2671e6d93ac777405551006.png

在7月6日的颁奖仪式上,小米AI实验室语音团队的陈俊杰和新一代Kaldi团队的康魏受邀进行了主题分享。

da75c96312c49ee2cad50dcd55cfadee.png

什么是重口音对话挑战赛?小米凭借什么技术拿下冠军?这些技术又能应用于哪些方面?且听小编缓缓道来......


01 

高手云集的挑战赛

共同探索重口音AI语音识别


6月16日,“Magichub重口音对话ASR挑战赛”圆满结束。与其说这是一场吸引了无数企业、高校的队伍报名的技术赛事,不如说这是一次对重口音AI语音识别共同探索的旅程。

随着人工智能领域的发展,人们的确享受到了智能产品带来的生活便利,尤其在语音识别领域,从移动端聊天的语音转写到重大会议的实时翻译,我们可以从中获取专注力和效率,但在幅员辽阔的中国,不同地域的人们对于相同的字、词,却有着不同的发音,而这对机器语音识别来说是一个巨大的挑战。

使用何种数据、如何训练机器,对于它们领会说话人的指令是十分重要的。所以此次挑战赛才以“重口音对话”为主题,携各位“技术高手”共同探索重口音对话ASR*。

此次挑战赛采用传统Hybrid的建模方式,基于Kaldi开源工具搭建了简易的重口音对话ASR 赛道的基线系统。参赛者提交模型和推理结果,限制48小时之内识别结果反馈。以最终得出的字错误率(标点符号、非语言符不参与)计算排名。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值