本文根据 《【Flink 1.12】基于 FLINK SQL 的实时数据打宽》中的内容整理而成
1 实时数据打宽
利⽤ Flink SQL 打宽实时数据,共有以下方式:
- 双流join (Regular join)
- 区间join (Interval join)
- 时态表join (Temporal join)
1.1 双流join
- 支持 INNER JOIN, LEFT JOIN, RIGHT JOIN,FULL OUTER JOIN
- 语法, 语义 均和传统批 SQL 一致
- 左右流都会触发结果更新
- 状态持续增长,一般结合 state TTL 使用
SELECT i.*, c.
本文介绍了使用 Flink SQL 进行实时数据打宽的三种方法:双流join、区间join和时态表Join。时态表Join包括与Lookup DB、版本表以及Hive分区表的关联,详细阐述了每种方法的特性和使用场景,并提供了示例。
订阅专栏 解锁全文
1392

被折叠的 条评论
为什么被折叠?



