面试顺序问题的Matlab和Lingo解法

本文探讨了如何使用Lingo和Matlab解决面试顺序问题,以最小化全体面试者完成面试所需时间。通过数学建模设立优化目标和约束条件,最终得出面试顺序为4-1-2-3,最早能在9:24结束所有面试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文lingo解法来源[1]。

1 面试顺序问题

有 4 名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先 找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即 在任何一个阶段 4 名同学的顺序是一样的)。由于 4 名同学的专业背景不同,所以每人 在三个阶段的面试时间也不同,如下表所示。这 4 名同学约定他们全部面试完以后一起离开公司。假定现在时间是早晨 8:00,请问他们最早何时能离开公司?

秘书初试 主管复试 经理面试
同学甲 13 15 20
同学乙 10 20 18
同学丙 20 16 10
同学丁 8 10 15

2 建立模型

实际上,这个问题就是要安排 4 名同学的面试顺序,使完成全部面试所花费的时间最少。
t i j { {t}_{ij}} tij为第i名同学参加第 j 阶段面试需要的时间(已知),令 x i j { {x}_{ij}} xij表示第i名同学参加第j阶段面试的开始时间(不妨记早上 8:00 面试开始为 0 时刻) (i=1,2,3,4 ; j =1,2,3),T 为完成全部面试所花费的最少时间。
优化目标:
min ⁡ { T } = { [ max ⁡ i   ( x i 3 + t i 3 ) ] } \min \left\{ T \right\}=\left\{ \left[ \underset{i}{\mathop{\max }}\,\left( { {x}_{i3}}+{ {t}_{i3}} \right) \right] \right\} min{ T}={ [imax(xi3+ti3)]} (1)

约束条件:
1) 时间先后次序约束(每人只有参加完前一个阶段的面试后才能进入下一个阶段):
x i j + t i j ≤ x i , j + 1 , i = 1 , 2 , 3 , 4 , j = 1 , 2 { {x}_{ij}}+{ {t}_{ij}}\le { {x}_{i,j+1}},i=1,2,3,4,j=1,2 xij+tijxi,j+1,i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值