数据可视化基础:理论、实践与应用的全面探索
1. 数据可视化的重要性与现状
数据可视化是将测量、模拟或模型(经验构建或机器学习)中的数据转化为交互式图像,用于探索、分析和展示的过程。自约三十年前诞生以来,它已成为许多领域知识发现过程中不可或缺的核心部分。科学家、工程师、医学从业者、分析师等都借助数据可视化技术处理各种数据。其强大之处在于有效利用人类的感官和认知系统,通过识别相关模式、观察隐藏关系以及建立新的数据连接,支持有意义的探索、复杂分析和关键决策。
由于视觉在人类感官系统中占主导地位,人们通过交互式计算机图形,努力将有意义的抽象信息或其他有用信息呈现给我们的眼睛。然而,目前数据可视化领域虽然取得了快速进展,拥有大量的视觉设计、算法、软件工具和开发套件,也有许多关于数学方法的研究,但仍缺乏一个广泛接受且统一的理论、感知和认知方面的描述,这使得可视化从业者难以在坚实的理论基础上获得更好的解决方案。
2. 数据可视化的基础需求
数据可视化的基础应涵盖可视化技术的基本原理、可视化过程的内在机制、可视化用户及其任务的概念化,以及开发可视化应用的原则。这些多学科基础与当前新兴的研究挑战相互作用,构成了数据可视化研究的更广泛基础。
目前,许多可视化研究人员和开发者通过实证研究来判断视觉设计的有效性,但他们缺乏一个全面的理论来解释为什么一种视觉设计比另一种更有效,以及如何优化视觉设计。可视化社区虽然积累了大量关于现有可视化技术在特定分析过程中作用的知识,但将这些知识推广到解释实践中的许多现象或指导新应用的开发仍然具有挑战性,特别是在使用数学理论和定量测量方面。
因此,可视化社区需要共同努力解决这些基本问题,这对于该领域的长期发
订阅专栏 解锁全文
2579

被折叠的 条评论
为什么被折叠?



