关注作者了解更多
我的其他CSDN专栏
关注作者了解更多
资料来源于网络,如有侵权请联系编者
我在上面讲课哦
目录
§7.1 波的基本概念
§7.2 平面简谐波的方程
§7.3 波的能量和流密度
§7.4 惠更斯原理 波的衍射
§7.5 波的叠加原理 波的干涉
§7.6 驻 波
§7.7 多普勒效应
振动在空间的传播过程叫做波动 机械振动在连续介质内的传播叫做机械波
§7-1 波的基本概念
一、机械波产生的条件
①有作机械振动的物体,即波源; ②有连续的介质.
如果波动中使介质各部分振动的回复力是弹性力,则称为弹性波。
弹性力: 有正弹性力(压、张弹性力)和切弹性力;
液体和气体弹性介质中只有正弹性力而没有切弹性力。
二、横波和纵波
横波: 振动方向与传播方向垂直的波
纵波: 振动方向与传播方向平行的波
沿着波的传播方向向前看去,前面各质点的振动位相都依次落后于波源的振动位相.
机械波向外传播的是波源(及各质点)的振动状态和能量.
横波在介质中传播时,只有固体能承受切变,因此横波只能在固体中传播.
纵波在介质中就形成稠密和稀疏的区域,故又称为疏密波.纵波可引起介质产生容变.固体、液体、气体都能承受容变,因此纵波能在所有物质中传播.
三、波线和波面
波场: 波传播到的空间。
波线(波射线) : 代表波的传播方向的射线。
波面: 波场中同一时刻振动位相相同的点的轨迹。
波前(波阵面): 某时刻波源最初的振动状态传到的波面。
各向同性均匀介质中,波线恒与波面垂直.
沿波线方向各质点的振动相位依次落后。
四、简谐波
波源以及介质中各质点的振动都是谐振动.
任何复杂的波都可以看成由若干个简谐波叠加.
五、物体的弹性形变*
弹性形变:物体在一定限度的外力作用下形状和体积发生改变,当外力撤去后,物体的形状和体积能完全恢复原状的形变。
1. 长变
在弹性限度范围内,应力与应变成正比
E称为弹性模量
2. 切变
相对面发生相对滑移
3.容变
六、描述波动的几个物理量
1.波速 u
振动状态(即位相)在单位时间内传播的距离,波速又称相速.
在固体媒质中横波波速为
在固体媒质中纵波波速为
G、 E为媒质的切变弹性模量和杨氏弹性模量 p为介质的密度
在同一种固体媒质中,横波波速比纵波波速小些
在弦中传播的横波波速为:
T为弦中张力,u为弦的线密度
在液体和气体只能传播纵波,其波速为:
B为介质的容变弹性模量 p为密度
理想气体纵波声速:
y为气体的摩尔热容比,Mmol为气体的摩尔质量, T为热力学温度, R为气体的普适常数, p为气体的密度
2.波动周期和频率
波的周期:一个完整波形通过介质中某固定点所需的时间,用T表示。
波的频率:单位时间内通过介质中某固定点完整波的数目,用v表示。
3.波长入
一波线上相邻的位相差为2入 的两质点的距离。
§7.2 平面简谐波的方程
在平面简谐波中,波线是一组垂直于波面的平行射线,因此可选任一波线上任一点的振动方程来研究平面波的传播规律.
一、平面简谐波的波动方程
1.一平面简谐波在理想介质中沿x轴正向传播
以某一波线为x轴,设原点振动方程:
O点振动状态传到p点需用时
t 时刻p处质点的振动状态重复
p点的振动方程:
沿x轴正向传播的平面简谐波的波动方程
沿着波的传播方向, 质点振动状态(位相)落后于原点(波源)的振动状态(位相).
2.沿x轴负向传播的平面简谐波的波动方程
波矢(波数)
二、波动方程的物理意义
1.如果给定x,即x=x0
2. 如果给定t,即t=t0
3.如x,t 均变化y=y(x,t)包含了不同时刻的波形
三、平面简谐行波的微分方程
§7.3 波的能量和流密度
一、波的能量和能量密度
平面简谐波
在x处取一体积元dV, 质量为 dm=pdV
质点的振动速度
体积元内媒质质点动能为
体积元内媒质质点的弹性势能为
1.波的能量
体积元内媒质质点的总能量为:
说明
(1) 在波动的传播过程中,任意时刻的动能和势能不仅大小相等而且相位相同,同时达到最大,同时等于零。
(2)在波传动过程中,任意体积元的能量不守恒。
横波在绳上传播时
体积元在平衡位置Q时,相对形变量最大,弹性势能也为最大;此时动能也最大。
体积元在最大位移P时,相对形变为零 ,弹性势能亦为零;此时动能等于零。
2.能量密度
单位体积介质中所具有的波的能量。
平均能量密度: 一个周期内能量密度的平均值。
二、波的能流和能流密度
1.能流:
单位时间内通过介质中某一截面的能量。
平均能流:在一个周期内能流的平均值。
2. 能流密度(波的强度):
通过垂直于波动传播方向的单位面积的平均能量
3.平面波和球面波的振幅
在均匀不吸收能量的媒质中传播的平面波在行进方向上振幅不变,球面波的振幅与离波源的距离成反比。
对平面波:
在一个周期T内通过S1和S2面的能量应该相等
对球面波:
所以振幅与离波源的距离成反比。如果距波源单位距离的振幅为A则距波源r 处的振幅为A/r
由于振动的相位随距离的增加而落后的关系,与平面波类似,球面简谐波的波函数:
三、波的吸收
波在实际介质中,由于波动能量总有一部分会被介质吸收,波的机械能不断减少,波强亦逐渐减弱。
设介质中某处振幅为A,经厚为dx的介质,振幅的衰减量为-dA,
§7.4 惠更斯原理 波的衍射
一、惠更斯原理
介质中波阵面(波前)上的各点.都可以看做是发射子波的波源.其后任一时刻这些子波的包迹就是新的波阵面.
在各向同性介质中传播
二、波的衍射
波在传播过程中遇到障碍物时,其传播方向要发生改变。波能绕过障碍物的边缘继续前进,这种现象叫波的衍射
应用惠更斯原理证明波的反射和折射定律
§7.5 波的叠加原理 波的干涉
波传播的独立性原理或波的叠加原理:
各列波在相遇前和相遇后都保持原来的特性(频率、波长、振动方向、传播方向等)不变,与各波单独传播时一样;而在相遇处各质点的振动则是各列波在该处激起的振动的合成.
能分辨不同的声音正是这个原因
说明:
(1) 波的叠加与振动的叠加是不完全相同的.
(2) 波的叠加原理与波动方程为线性微分方程是一致的.
三、波的干涉
两列波若频率相同、振动方向相同、在相遇点的位相相同或位相差恒定,则在合成波场中会出现某些点的振动始终加强,另一些点的振动始终减弱(或完全抵消),这种现象称为波的干涉.
1.相干条件
频率相同
振动方向相同
位相差恒定
相干波源: 满足相干条件的波源
2.波场中的强度分布
设s1、s2为两相干波源,其振动方程分别为
传播到p点引起的振动分别为:
在p点的振动为同方向同频率振动的合成。
合成振动为:
其中:
由于波的强度正比于振幅,所以合振动的强度为:
说明:
(1) 位相仅由位置决定,合振幅由波程差(r2-r1)决定,故这是一个稳定的叠加图样。即有干涉现象
(2) 干涉相长与干涉相消的条件:
§7.6 驻波
驻波是两列振幅相同、相向传播的相干波的叠加称为驻波.
一、驻波方程
简单的,设两列相向传播的波在原点位相相同
两波相遇,其合成波为
函数不满足
不具备传播的特征,它不是行波
它表示各点都在作简谐振动,各点振动的频率相同,是原来波的频率。但各点振幅随位置的不同而不同。
二、驻波的特点
1.波腹与波节
驻波振幅分布特点
2.位相并不传播(驻波)
相邻两波节间各点振动位相相同; 波节两边各点振动位相相反。
3.驻波能量
驻波振动中无位相传播,也无能量的传播。能流密度为0.平均说来没有能量的传播,一个波段内不断地进行动能与势能的相互转换, 并不断地分别集中在波腹和波节附近而不向外传播。
三、半波损失
波阻(波的阻抗): 是指介质的密度与波速之乘积
z = pu.
1.若 p1u1 > p2u2 ,即波密-》波疏
若忽略透射:
反射波和入射波同相
2.若p1u1 < p2u2 ,即波疏——》波密
反射波有相位突变Π——半波损失
§7.7 多普勒效应
一、多普勒效应
多普勒于1842年发现,当波源或观察者、或者两者同时相对于介质有相对运动时,观察者接收到的波的频率与波源的振动频率不同,这类现象称为多普勒效应或者多普勒频移。
水波的多普勒效应(波源向右运动)
简单地,选介质为参考系,以波源及观察者连线为x轴,并规定波动向着观察者传播方向为正方向
注意: 波速u是波相对于介质的速度,它只决定于介质性质,恒为正值. 区分3种频率,波动频率是以介质为参考系,接收频率是以接收者为参考系
1.波源不动,观察者相对于介质运动 v s=0, v B 不等于 0
观察者测得的波速 (vB>0)
在不考虑相对论效应时,观察者测得的波长
入‘=入
接收频率vB
当观察者向着波源运动时 (V B >0), 接收频率提高。
当观察者远离波源运动时 (V B <0) , 接收频率降低。
2.观察者不动,波源相对于介质运动 Vs 不等于0, vB=0
由于波源的运动,介质中的波长发生发变化。
波源向着观察者运动时 (Vs >0)
运动的前方波长缩短,波形被压缩
接收频率
若波源背离观察者运动 (Vs<0)
S 运动的后方波长伸长,则波形被拉长
接收频率会降低
3.波源和观察者同时相对于介质运动(V B不等于 0 , V S 不等于 0)
我在上面讲课哦
资料仅供学习使用
如有错误欢迎留言交流
上理考研周导师的其他专栏:
上理考研周导师了解更多