给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
输出样例:
Yes No
No
#include "iostream" using namespace std; typedef int ElementType; typedef struct TNode *Position; typedef Position BinTree; struct TNode { ElementType Data; BinTree Left; BinTree Right; }; BinTree Insert(BinTree BST, ElementType X) { if (!BST) { BST = (BinTree)malloc(sizeof(struct TNode)); BST->Left = NULL; BST->Right = NULL; BST->Data = X; } else if (X < BST->Data) { BST->Left = Insert(BST->Left, X); } else if (X > BST->Data) { BST->Right = Insert(BST->Right, X); } return BST; } bool isSameBST(BinTree b1,BinTree b2) { if ((b1==NULL) && (b2==NULL)) return 1; if ((b1 && (b2==NULL))) { return 0; } if ((b1 == NULL) && b2) { return 0; } if (b1->Data != b2->Data) return 0; else { return (isSameBST(b1->Left, b2->Left) && isSameBST(b1->Right, b2->Right)); } } int main() { int n, l; while (1) { cin >> n; if (n == 0) break; cin >> l; BinTree BST1 = NULL; BinTree BST2 = NULL; for (int i = 0; i < n; i++) { int p; cin >> p; BST1 = Insert(BST1, p); } while (l--) { for (int i = 0; i < n; i++) { int p; cin >> p; BST2 = Insert(BST2, p); } if (isSameBST(BST1, BST2)) { cout << "Yes" << endl; } else { cout << "No" << endl; } free(BST2); BST2 = NULL; } } return 0; }