下面的方案排序主要是参照先学一定的基础理论再动手,关于实际案例的介绍将放在后面介绍
学习方案
在学习的过程中主要参照了这些官方文档进行对应内容学习,这里非常感谢!Thanks♪(・ω・)ノ
Datawhale人工智能培养方案 - 飞书云文档 (feishu.cn)
从文件读取数据 | 莫烦Python (mofanpy.com)
笔记整理方式
贺完结!CS231n官方笔记授权翻译总集篇发布 - 知乎 (zhihu.com)
编程基础知识
python
python不多说作为基础,要着重从基础学习到增强,后面可以利用李沐推荐的方案进行相关补充
[[00 Python总览]]
李沐老师推荐的python基础教程
https://learnpython.org/
数据结构
天下武功,唯数据结构,修内功!!
我主要参照阿里云的教程重新复习了一篇
[[补充知识 数据结构]]
深度学习语言
Pytorch
TensorFlow
利用网上的教程和吴恩达老师的教程,辅助李老师推荐的书籍
[[吴恩达 L2-1-3.2 Tensorflow中数据形式]]
[[吴恩达 L2-1-3.3 Tensorflow搭建网络]]
SK-Learn
机器学习知识
参照了多位老师的教程,注重不同老师之间对于知识点的讲解!
先看吴恩达再看白板推导,辅助书籍阅读
[[00 吴恩达基本]]
作为补充的相关内容
[[00 白板推导总概述]]
学习基本的xgoot算法的实现
机器学习原理与实践 -AI学习-阿里云天池 (aliyun.com)
[[00 李宏毅基础]]
李沐老师的强烈推荐!
[[00 李沐动手学汇总]]
前置知识点
[[补充知识 相关基本操作了解]]
[[补充知识 琐碎数据知识]]
上面基础知识已经学习不需要再复习,只是作为收集资料进行补充
深度学习实操
实操训练
[[补充知识 小土堆入门]]
该视频详细地讲解了如何对如深度学习有所了解,模型框架搭建,以实际的例子来带你进入深度学习!非常关键
详细介绍各个部分网络的搭建过程,后面可以作为项目落地的指南
http://www.feiguyunai.com/index.php/2019/09/11/pytorch-char03/
复现代码
写代码顺序
先写model、再dataset、再train
[[开源实现 资料补充]]
我目前的练手代码
- HyConet
- yolo
下面是记录练手的相关教程
[[Yolo5]]
[[HyCoNet-代码]]
补充资料
可视化部分
在PyTorch中使用Visdom可视化工具 - pytorch中文网 (ptorch.com)
深度学习常用模块
xgoot教程
天池的xgoot教程
优秀的实例教程
下面主要汇总了一些我在网上看见不错的实例代码及教程,可以未来考虑参照这个来实际锻炼
Yolo教程
推荐up:Bubbliiiing
下面这是csdn上的一些代码
改进yolo算法
里面删除了相关的
不过内容比较简单,只是作为思路参照