二叉树:
是一种常用的数据结构,处理起来比较简单方便,而且普通树可以很方便地转换成二叉树使用
定义: 节点度最多为2
二叉树是n个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成,是有序树
(***)二叉树性质:
性质1: 二叉树的第i层上至多有2^(i-1)(i≥1)个节点
性质2: 深度为h的二叉树中至多含有2^h-1个节点
性质3: 若在任意一棵二叉树中,有n0个叶子节点,有n2个度为2的节点,则必有n0=n2+1
性质4: 具有n个节点的完全二叉树深为log2x+1(其中x表示不大于n的最大整数)
性质5: 若对一棵有n个节点的完全二叉树进行顺序编号(1≤i≤n),那么,
对于编号为i(i≥1)的节点: (服务顺序存储二叉树)
当i=1时,该节点为根,它无双亲节点
当i>1时,该节点的双亲节点的编号为i/2
若2i≤n,则有编号为2i的左节点,否则没有左节点
若2i+1≤n,则有编号为2i+1的右节点,否则没有右节点
二叉树的操作:
构建、销毁、遍历、高度、密度、插入、删除、求左、求右、求根
二叉树的存储:
顺序: (bin_tree_array.c)
必须按照完全二叉树的格式进行存储,空位置使用特殊数据代替
数据项:
存储节点的首地址
容量
注意: 通过编号的关系来找到双亲、孩子节点
链式: (bin_tree_list.c)
由一个节点组成,通过左右子树指针指向自己的左右子树
节点数据项:
数据
左子树指针
右子树指针
二叉树的遍历:(例子看钉钉图)
前序: 根 左 右 A C D E G H B F I
中序: 左 根 右 D C G E H A F I B
后序: 左 右 根 D G H E C I F B A
注意: 前中后由根节点决定,并且左右子树的次序不能改变
注意: 根据前序+中序或者中序+后序可以还原出一棵树,但是前序+后序不能还原
层序遍历: 从上到下,从左到右来遍历一棵树,必须配合队列使用
特殊二叉树:
满二叉树:
1、如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树
2、每层的节点满足2^(i-1)
完全二叉树:
1、深度为k,有n个结点的二叉树当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称为完全二叉树
2、除了最后一层外,其余每一层都是满的,最后一层的节点必须从左到右分布,就是完全二叉树
3、如果所有的节点都满足从上到下、从左到右分布,就是完全二叉树
有序二叉树: (order_tree.c)
左子树的数据小于根,右子树大于等于根
注意: 由于有序二叉树的节点需要频繁地插入删除,因此不适合采用顺序结构
注意: 有序二叉树的中序遍历,一定是从小到大,所以有序二叉树也是排序算法,它的查找天然是二分查找(常考)
线索二叉树:
规律: 在有n个节点的链式二叉树中,必定有n+1个空指针域
链式二叉树中有很多的空指针,可以让这些指针的一部分指向下一个节点,这样遍历树时可以不用递归而是使用循环,提高树的遍历速度
中序线索二叉树: (clue_bin_tree.c)
节点数据项:
数据
左子树指针
右子树指针
右子树指针标志(真为线索)
实现过程:
1、创建线索
2、按照线索进行遍历
线索二叉树的主要目的是为了提高树的遍历速度
选择树(胜者树、败者树):
是一棵完全二叉树,把待比较的数据存储在最后一层,根节点是左右子树中的一个,是它们的最大或最小的作为根,选择树的功能是能够方便地找出树中的最大值或者最小值
堆: (heap.c) (heap2.c 为了解决重复+1)
是一种完全二叉树,不适合链式存储
大顶堆(大根堆): 根节点比左右子树大
小顶堆(小根堆): 根节点比左右子树小
数据项:
存储数据的内存首地址
容量
数量
运算:
创建、添加、删除、空堆、满堆、堆顶
二叉树常考的笔试面试题:
1、把一棵二叉树转换为它的镜像树
2、输入两棵二叉树A、B,判断B是不是A的子结构
(空树不是任意一棵树的子结构)
3、计算出有序二叉树中倒数第K大的数
4、判断一棵二叉树是否是对称
5、将一棵有序二叉树转换为一个有序的双向循环链表
6、通过一个函数,把一棵二叉树按照之字型打印,即第一行从左往右,第二行从右往左,第三层从左往右,第四次从右往左,以此类推(使用两个栈)