目录
(本文源自MIMO信道预编码技术研究博士论文,侵删)
基于理想CSI的预编码
天线选择性传输
- 天线选择性原理及模型
- 定理
线性预编码
- 线性预编码的基本思想,就是通过线性变换将信息数据流映射成为更适合当前信道传输的数据流,然后将其进行调制并通过天线发送出去。当发射端具有CSI时,引入线性预编码具有如下的优点:1.使信道均衡更加容易;2.优化发送策略,提升系统性能。预编码器的设计就是求解最优的预编码矩阵F,不同的设计准则下,最优的预编码器也不同。
- ZF准则(迫零预编码与接收端迫零均衡是等效的)
- 最小均方误差(MMSE)准则
基于非理想CSI的预编码
实际的通信系统中,发射端的信道状态信息(CSI)大多是由接收端反馈回来的,这决定了发射端不可能得到理想的CSI,所以,研究非理想CSI条件下的发射预编码更具有现实意义。
基于均值反馈信道的预编码
- 模型
-
- 联合功率分配与自适应调制
- 注水(water filling)算法是使系统容量最大化的最优功率分配算法。当发射端获得了当前CSI的估计H,通过信道矩阵的奇异值分解(SVD ),可以将MIMO信道转变成等效的独立并行SISO信道。那么,满足注水定理的功率分配方案及最大容量为
- 注水算法分配到各发射天线上的功率是连续的。但是,当发射天线上信号进行调制时,可选的星座集合是固定的,调制比特数是离散的整数而不是连续的,如QPSK, 8PSK, 16QAM,分别对应的调制比特数为2, 3, 4。
- 注水(water filling)算法是使系统容量最大化的最优功率分配算法。当发射端获得了当前CSI的估计H,通过信道矩阵的奇异值分解(SVD ),可以将MIMO信道转变成等效的独立并行SISO信道。那么,满足注水定理的功率分配方案及最大容量为
基于格拉斯曼空间装箱的预编码
- 平均反馈信道模型虽然较好地描述了信道状态信息,但是,每次要将信道矩阵的所有元素全部反馈到发射端,会浪费大量的反向信道频谱资源,这在一定程度上降低了系统的频谱利用率。为了减少反馈CSI对频谱资源的浪费,本节利用格拉斯曼空间装箱原理构建预编码矢量的码本,并在此基础上讨论发射端的波束成形和功率分配。
- 模型
- 基于格拉斯曼空间装箱的码本设计
- 分别为波束成形矩阵和功率分配矩阵设计码本,不考虑二者之间的相互影响
基于矢量量化的MIMO系统预编码
- 利用格拉斯曼装箱原理来构建预编码矩阵码本,要求信道矩阵H的元素满足独立同分布的高斯分布。实际信道中,很多情况下这个条件无法满足
-
-
MIMO-OFDM
假设信道是各态历经的瑞利衰落信道,并且是准静态的,即:在一个OFDM符号内,信道状态保持不变,而在两个符号之间,信道状态改变。天线之间距离足够大,可以认为他们之间的信道响应是不相关的。此时每个载波信道矩阵的元素均满足独立同分布的复高斯分布cN(o, 1)。在一定载波间隔内,载波的信道特性可以认为是相关的,载波间隔的数目取决于信道的特性。