一.前言
若你想学习或正在学习动态规划,背包问题一定是你需要了解的一种题型,并且大多数人最初都是从背包问题入坑进而打开动态规划这一大门。背包问题分为多种,你可以先掌握最常见的主要是三类:01背包、完全背包、多重背包
二.分析背包问题
1)01背包
在考虑一个物品时(从目标容器到物品大小容器考虑(保证只放一次)),放入当前物品后,所剩空间只能考虑其他物品
★状态:考虑了前i个物品,大小为j的容器能放入的最大价值的商品
转移方程:f[i][j]=max(f[i-1][j],f[i-1][j-V[i]])+W[i])
转移方程:dp[j]=max(dp[j-V[i]],dp[j]])(注:等号右边的dp为上个循环的结果,即考虑当前物品前面的所有物品的结果)
2)多重背包
在考虑一个物品时,将放不同个数看成不同物品,即可转化为01背包问题
3)完全背包
在考虑一个物品时(从物品大小容器到目标容器考虑(保证应放尽放)),放入当前物品后所剩空间只能考虑其他物品
三.例题
1)题目
01背包
有 n 件物品和一个容量是 v 的背包。每件物品只能使用一次。
第 i 件物品的体积是 v i,价值是 w i。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int v[N]; //每个物品的体积
int w[N]; //每个物品的价值
int f[N][N]; //状态转移方程,上面有详细解释
int main(){
int n,m;
scanf("%d%d",&n,&m); //输入物品数量和背包容量
for(int i = 1;i <= n;i ++) scanf("%d%d",&v[i],&w[i]); //输入每个物体的体积和价值
for(int i = 1;i <= n;i ++){
for(int j = 0;j <= m;j ++){
f[i][j] = f[i - 1][j]; //合并内容
if(j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]); //已经把f[i][j]赋值为f[i - 1][j]了,现在就可以直接用f[i][j]了
}
}
printf("%d",f[n][m]);
return 0;
}
2)题目
有 n种物品和一个容量是v的背包,每种物品都有无限件可用。
第 i 种物品的体积是 v i,价值是 w i。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
代码
#include <iostream>
using namespace std;
const int N = 1100;
int n, m;
int v[N], w[N];
int f[N][N];
int main() {
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i ++ ) {
for (int j = 1; j <= m; j ++ ) {
f[i][j] = f[i - 1][j];
for (int k = 1; k <= j / v[i]; k ++ ) {
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
}
}
}
cout << f[n][m] << endl;
return 0;
}
3)题目
有 n 种物品和一个容量是 v 的背包。
第 i 种物品最多有 s i 件,每件体积是 v i,价值是 w i。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int v[N], w[N], s[N];
int f[N][N];
int n, m;
int main(){
cin >> n >> m;
for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i] >> s[i];
for(int i = 1; i <= n; i ++){//枚举背包
for(int j = 1; j <= m; j ++){//枚举体积
for(int k = 0; k <= s[i]; k ++){
if(j >= k * v[i]){
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
}
}
}
}
cout << f[n][m] << endl;
return 0;
}
~感谢观看❥(^_-)