1305:Maximum sum

【算法分析】
 动态规划:线性动规
要在整个序列中取两个不重合的子段,分别记为子段1与子段2,记子段2的起始位置为i 。
以i 为分界线,将整个序列分为两部分,分别为下标1 ∼ i − 1 与下标i ∼ n。

  • 子段1存在于下标1 ∼ i − 1范围内,子段1的和应该最大,即为所有满足j < i的j 中,以j 为结尾的最大子段和。
  • 子段2以i 起始,子段2的和应该最大,所以子段2应该为以i 为起始的最大子段和。

基于上述思路,应该先分别求以i为结尾以及以i为起始的最大子段和
记a[i]为第i个元素

1. 求以i为结尾的最大子段和
状态定义:dp1[i]:以i为结尾的最大子段和
状态转移方程:
分割集合:以i为结尾的子段
子集1:以i-1为结尾的子段,添加第i元素,构成以i为结尾的子段。该子段的和为dp1[i]=dp1[i-1]+a[i]
子集2:第i元素自己构成子段,子段和为:dp1[i]=a[i]
以上两种情况取最大值

2. 求以i为起始的最大子段和
状态定义:dp2[i]:以i为起始的最大子段和
状态转移方程:
分割集合:以i为起始的子段
子集1:以i+1为起始的子段,添加第i元素,构成以i为起始的子段。该子段的和为dp2[i]=dp2[i+1]+a[i]
子集2:第i元素自己构成子段,子段和为:dp2[i]=a[i]
以上两种情况取最大值
注意,求该状态时,下标从大到小遍历

3 求互不重叠的两个最大子段和的最大加和
i 从2循环到n 
以i 为分界线,将整个序列分为两部分,分别为下标1 ∼ i − 1 与下标i ∼ n 。
设mx表示:满足1 ≤ j < i 的以j 为结尾的最大子段和dp1[j]中的最大值。i 每次增大1后,第一段取到的新元素的下标为i − 1。更新mx,写法为mx = max(mx, dp1[i-1])
以i为起始的最大子段和为dp2[i]
mx + dp2[i]为以i 为子段2的起始位置时能取到的最大的互不重叠的两个子段的加和。
在循环中求这个表达式求最大值,即为结果。

【参考代码】

#include <bits/stdc++.h>
using namespace std;
#define N 50005
#define INF 0x3f3f3f3f //0x3f3f3f3f表示无穷大或极大值
int dp1[N], dp2[N], a[N];//dp1[i]:以i为末尾的子段的最大和 dp2[i]:以i为起始的子段的最大和
int main()
{
    int t, n;
    cin >> t;
    while(t--)
    {
        memset(dp1, 0, sizeof(dp1));
        memset(dp2, 0, sizeof(dp2)); 
        cin >> n;
        for(int i = 1; i <= n; ++i)
            cin >> a[i];
        for(int i = 1; i <= n; ++i)
            dp1[i] = max(dp1[i-1]+a[i], a[i]);
        for(int i = n; i >= 1; --i)
            dp2[i] = max(dp2[i+1]+a[i], a[i]);
        int mx = -INF, ans = -INF;//mx:1~i-1中最大子段和 ans:结果 两个不重合的子段的最大和 
        for(int i = 2; i <= n; ++i)//求1~i-1中最大子段和 与 以i开始的最大子串和 的加和的最大值
        {
            mx = max(mx, dp1[i-1]);
            ans = max(ans, mx + dp2[i]);
        }
        cout << ans << endl;
    }
    return 0;
}

  • 12
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是一个经典的 Maximum Sum 子数组问题的动态规划代码: ```python def max_sum_subarray(nums): if not nums: return 0 n = len(nums) dp = [0]*n dp[0] = nums[0] max_sum = nums[0] for i in range(1, n): dp[i] = max(dp[i-1]+nums[i], nums[i]) max_sum = max(max_sum, dp[i]) return max_sum ``` 该算法的时间复杂度为 $O(n)$,其中 $n$ 是数组的长度。 ### 回答2: Maximum sum问题是一个经典的动态规划问题,其目标是在一个给定的数组中找到一个具有最大和的子数组。 在解决这个问题时,可以定义一个一维动态规划数组dp,其中dp[i]表示以第i个元素结尾的子数组的最大和。那么,可以得出动态规划的转移方程如下: dp[i] = max(dp[i-1] + nums[i], nums[i]) 其中,nums表示给定的整数数组。 接下来,可以使用一个变量maxSum来记录所有子数组的最大和。遍历整个数组,更新dp[i]的同时,不断更新maxSum的值,即可得到最终的结果。 下面是该问题的动态规划代码实现: ```python def maxSum(nums): dp = [0] * len(nums) maxSum = float('-inf') dp[0] = nums[0] maxSum = max(maxSum, dp[0]) for i in range(1, len(nums)): dp[i] = max(dp[i-1] + nums[i], nums[i]) maxSum = max(maxSum, dp[i]) return maxSum ``` 该算法的时间复杂度为O(n),其中n为数组的长度。使用动态规划的思想,可以高效地解决Maximum sum问题。 ### 回答3: 动态规划(Dynamic Programming)是一种常用的算法思想,可以解决一些最优化问题。Maximum Sum问题是一种经典的动态规划问题,目标是找出一个数组中最大的子数组和。 要编写Maximum Sum动态规划代码,可以按照以下步骤进行: 1. 首先定义一个变量max_sum,用于记录当前最大的子数组和,初始化为数组中的第一个元素(即max_sum = arr[0])。 2. 然后定义一个变量cur_sum,用于记录当前的子数组和,初始化为数组中的第一个元素(即cur_sum = arr[0])。 3. 接着,使用一个循环遍历数组中的每一个元素(从第二个元素开始): (1)如果当前子数组和cur_sum加上当前元素arr[i]大于当前元素arr[i]本身,说明加上当前元素后,子数组和变得更大,因此更新cur_sum为cur_sum + arr[i]。 (2)否则,当前元素arr[i]比当前子数组和cur_sum更大,说明当前元素作为新的起点,重新开始构建子数组,即令cur_sum = arr[i]。 (3)将当前子数组和cur_sum与当前最大的子数组和max_sum进行比较,如果cur_sum大于max_sum,则更新max_sum为cur_sum。 4. 最后,返回最大的子数组和max_sum作为最终结果。 下面给出这个算法的代码实现: ```python def maximum_sum(arr): max_sum = arr[0] cur_sum = arr[0] for i in range(1, len(arr)): if cur_sum + arr[i] > arr[i]: cur_sum += arr[i] else: cur_sum = arr[i] if cur_sum > max_sum: max_sum = cur_sum return max_sum ``` 这段代码的时间复杂度为O(n),其中n为数组的长度,因为需要遍历整个数组。在使用动态规划思想解决Maximum Sum问题时,可以通过定义合适的状态和状态转移方程来简化问题,并提高算法的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值