题目
2024.考试的最大困扰度
题目大意
一位老师正在出一场由 n
道判断题构成的考试,每道题的答案为 true (用 'T'
表示)或者 false (用 'F'
表示)。老师想增加学生对自己做出答案的不确定性,方法是 最大化 有 连续相同 结果的题数。(也就是连续出现 true 或者连续出现 false)。
给你一个字符串 answerKey
,其中 answerKey[i]
是第 i
个问题的正确结果。除此以外,还给你一个整数 k
,表示你能进行以下操作的最多次数:
- 每次操作中,将问题的正确答案改为
'T'
或者'F'
(也就是将answerKey[i]
改为'T'
或者'F'
)。
请你返回在不超过 k
次操作的情况下,最大 连续 'T'
或者 'F'
的数目。
样例
示例 1:
输入:answerKey = "TTFF", k = 2
输出:4
解释:我们可以将两个 'F' 都变为 'T' ,得到 answerKey = "TTTT" 。
总共有四个连续的 'T' 。
示例 2:
输入:answerKey = "TFFT", k = 1
输出:3
解释:我们可以将最前面的 'T' 换成 'F' ,得到 answerKey = "FFFT" 。
或者,我们可以将第二个 'T' 换成 'F' ,得到 answerKey = "TFFF" 。
两种情况下,都有三个连续的 'F' 。
示例 3:
输入:answerKey = "TTFTTFTT", k = 1
输出:5
解释:我们可以将第一个 'F' 换成 'T' ,得到 answerKey = "TTTTTFTT" 。
或者我们可以将第二个 'F' 换成 'T' ,得到 answerKey = "TTFTTTTT" 。
两种情况下,都有五个连续的 'T' 。
数据规模
提示:
n == answerKey.length
1 <= n <= 50000
answerKey[i]
要么是'T'
,要么是'F'
1 <= k <= n
思路
考虑滑动窗口解法:
比如当前考虑最大的连续F
的数量:从左到右枚举右端点i
,维护
[
l
e
f
t
,
i
]
[left,i]
[left,i]中T
的数量totc
,如果
t
o
t
c
>
k
totc> k
totc>k,那么左端点left
就需要右移,直到
t
o
t
c
≤
k
totc\leq k
totc≤k。每次更新ans=max(ans,i-left+1)
。对于求解最大的连续T
的数量也是同理。
最后两种情况取答案最大的即可。
代码
// short int long float double bool char string void
// array vector stack queue auto const operator
// class public private static friend extern
// sizeof new delete return cout cin memset malloc
// relloc size length memset malloc relloc size length
// for while if else switch case continue break system
// endl reverse sort swap substr begin end iterator
// namespace include define NULL nullptr exit equals
// index col row arr err left right ans res vec que sta
// state flag ch str max min default charray std
// maxn minn INT_MAX INT_MIN push_back insert
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int>PII;
typedef pair<int, string>PIS;
const int maxn=5e4+50;//注意修改大小
long long read(){long long x=0,f=1;char c=getchar();while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}while(isdigit(c)){x=x*10+c-'0';c=getchar();}return x*f;}
ll qpow(ll x,ll q,ll Mod){ll ans=1;while(q){if(q&1)ans=ans*x%Mod;q>>=1;x=(x*x)%Mod;}return ans%Mod;}
class Solution {
public:
int move(string answerKey,int k,char c){
int n=answerKey.length(),ans=0,totc=0,left=0;
for(int i=0;i<n;i++){
totc+=answerKey[i]!=c;
while(totc>k){
totc-=answerKey[left++]!=c;
}
ans=max(ans,i-left+1);
}
return ans;
}
int maxConsecutiveAnswers(string answerKey, int k) {
return max(move(answerKey,k,'F'),move(answerKey,k,'T'));
}
};