知识蒸馏学习

知识蒸馏----教师和学生模型:将已训练完善的模型作为教师模型,通过控制“温度”从模型的输出结果中“蒸馏”出“知识”用于学生模型的训练,并希望轻量级的学生模型能够学到教师模型的“知识”,达到和教师模型相同的表现。

本质上属于迁移学习

优点:

1.节省成本。由于使用现有的已经训练好的模型模型,将其中蕴含的信息用于指导新的训练阶段,避免了重新学习耗费的时间。

2.保护隐私。将模型和知识表示进行分离,从而在训练过程中将教师模型作为“黑盒”处理,可以避免直接暴露敏感数据,达到隐私保护效果

3.模型简单。将复杂的深层网络模型向浅层的小型网络模型迁移知识。

在这里插入图片描述

分类:

离线蒸馏:老师模型传授给学生模型,不参与训练。

在线蒸馏:老师模型没有预训练,准备和学生模型一同进行训练,在一同训练的过程中来指导学生模型进行学习,完成知识蒸馏。

自蒸馏:老师模型和学生模型是一个模型,也就是一个模型来指导自己进行学习,完成知识蒸馏

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在联邦学习中应用知识蒸馏(Knowledge Distillation)可以帮助将教师模型的知识传输给较小的学生模型,从而减小模型的大小并保持较高的预测性能。下面是一个简单的联邦学习知识蒸馏的实战步骤: 1. 设计教师模型:首先,需要设计一个较大、复杂的教师模型,该模型在全局数据上进行训练,并具有较高的预测性能。 2. 分发教师模型:将教师模型分发给各个边缘设备或客户端,设备使用本地数据对教师模型进行推理,生成软标签或教师输出。 3. 设计学生模型:设计一个较小、简单的学生模型,该模型将用于在边缘设备上进行训练和推理。学生模型应该具有与教师模型相似的结构,但参数量较少。 4. 本地训练学生模型:在每个边缘设备上使用本地数据训练学生模型。在训练过程中,使用教师模型的软标签或教师输出作为目标,而不是真实标签。这样,学生模型可以学习教师模型的知识。 5. 参数聚合:将每个设备上训练得到的学生模型参数传输回中央服务器,通过聚合这些参数生成一个全局的学生模型。 6. 全局学生模型预测:使用全局学生模型对新的数据进行预测。可以将新的数据发送到中央服务器,或者在边缘设备上进行预测。 需要注意的是,知识蒸馏的效果取决于教师模型学生模型之间的差异。如果学生模型的容量过小,可能无法充分利用教师模型的知识。因此,在设计学生模型时,需要在模型大小和预测性能之间进行权衡。 此外,还可以通过调整温度参数(Temperature)来控制软标签的软化程度,从而影响知识传输的强度。较高的温度会使软标签分布更平滑,减少标签之间的差异,而较低的温度会增加标签之间的差异。 综上所述,联邦学习知识蒸馏包括设计教师模型、分发教师模型、设计学生模型、本地训练学生模型、参数聚合和全局学生模型预测等步骤。通过这些步骤,可以在联邦学习环境中实现知识蒸馏,从而减小模型的大小并保持较高的预测性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值