引言
在深度学习的领域中,自然语言处理(NLP)是一个令人兴奋且快速发展的分支。它使得机器能够理解、解释和生成人类语言。在本博客中,我们将通过构建一个简单的标题生成器来探索NLP的基础知识,了解如何使用深度学习模型处理序列数据。
序列数据与自然语言
与图像数据不同,语言数据是序列化的,这意味着单词的顺序对于理解整个句子的意图至关重要。处理这类数据时,我们通常需要使用专门的模型,如循环神经网络(RNN)。
目标
通过本节的学习,您将能够:
- 准备循环神经网络(RNN)使用的序列数据。
- 构建和训练模型以执行单词预测任务。
标题生成器的构建
我们将构建一个模型,它可以根据一些起始单词预测出一个完整的标题。这个模型将使用《纽约时报》的文章标题作为训练数据。
读入和清洗数据
首先,我们需要从CSV文件中读取数据,并将它们存储在一个列表中。同时,我们需要清洗数据,过滤掉任何标记为“未知”的标题。
import os
import pandas as pd
nyt_dir = 'data/nyt_dataset/articles/'
all_headlines = []
for filename in os.listdir(nyt_dir):
if 'Articles' in filename:
headlines_df = pd.read_csv(nyt_dir + filename)
all_headlines.extend(list(headlines_df.headline.values))
# 清洗数据,移除 'Unknown'
all_headlines = [h for h in all_headlines if h != 'Unknown']
分词和创建序列
接下来,我们使用Keras的Tokenizer
将文本数据转换为数字序列。分词是将文本转换为模型可以理解的数字表示的过程。
from tensorflow.keras.preprocessing.text import Tokenizer
tokenizer = Tokenizer