引言
在前一篇博客中,我们探讨了如何使用MNIST数据集训练一个基础的神经网络来进行手写数字识别。在本文中,我们将更进一步,使用美国手语字母表(ASL)数据集来构建一个定制化的图像分类模型。通过这个过程,你将学习到如何准备数据、构建模型、以及对模型进行训练和评估。
美国手语数据集简介
美国手语(ASL)是一种复杂的视觉语言,它包含了26个字母的手语表示。在本练习中,我们将使用一个包含这些字母图像的数据集,该数据集类似于MNIST,但对我们的模型来说更具挑战性。
数据准备
与MNIST数据集不同,ASL数据集需要我们手动加载和准备数据。我们将使用Pandas库来读取CSV格式的数据集,并使用matplotlib来可视化数据。
import pandas as pd
import matplotlib.pyplot as plt
# 读取训练和验证数据集
train_df = pd.read_csv("data/asl_data/sign_mnist_train.csv")
valid_df = pd.read_csv("data/asl_data/sign_mnist_valid.csv")
# 提取标签和图像数据
y_train = train_df['label']
y_valid = valid_df['label']
x_train = train_df.drop('label',