opencv图像基础(1)图像深度

27 篇文章 3 订阅
 

opencv图像基础(1)图像深度

分类: opencv MFC   453人阅读  评论(0)  收藏  举报

图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级.比如一幅单色图像,若每个象素有8位,则最大灰度数目为2的8次方,即256.一幅彩色图像RGB3个分量的象素位数分别为4,4,2,则最大颜色数目为2的4+4+2次方,即1024,就是说像素的深度为10位,每个像素可以是1024种颜色中的一种.

例如:一幅画的尺寸是1024*768,深度为16,则它的数据量为1.5M。

计算如下:1024*768*16bit=(1024*768*16)/8字节=[(1024*768*16)/8]/1024KB={[(1024*768*16)/8]/1024}/1024MB。


Opencv 转化函数,参考opencv 2.3.1 manual Reference
[cpp]  view plain copy
  1. Converts one array to another with optional linear transformation.  
  2. C: void cvConvertScale(const CvArr* src, CvArr* dst, double scale=1, double shift=0)  
  3. #define cvCvtScale cvConvertScale  
  4. #define cvScale cvConvertScale  
  5. #define cvConvert(src, dst ) cvConvertScale((src), (dst), 1, 0 )  
  6. Parameters:  
  7. src – Source array  
  8. dst – Destination array  
  9. scale – Scale factor  
  10. shift – Value added to the scaled source array elements  

scale  ( Double )
The value to be multipled with the pixel
shift (Double)
The value to be added to the pixel
Return Value
Image of the specific depth, val = val * scale + shift

如果 scale=1,shift=0 就不会进行比例缩放. 这是一个特殊的优化,相当于该函数的同义函数名:cvConvert 。

如果原来数组和输出数组的类型相同,这是另一种特殊情形,可以被用于比例缩放和平移矩阵或图像,此时相当于该函数的同义函数名:cvScale。

因此可以用这个函数实现不同位深之间的转换,也可以用于不同数据类型之间的转换!



下面转一段别人总结的深度显示范围。
测试double型:0.0--1.0之间                          IPL_DEPTH_64F

测试float型:0.0--1.0之间                             IPL_DEPTH_32F

测试long型:0--65535之间                            IPL_DEPTH_32S        

测试short int型:-32768--32767之间                 IPL_DEPTH_16S       

测试unsigned short int型:0--65535之间             IPL_DEPTH_16U

测试char型:-128--127之间                           IPL_DEPTH_8S         

测试unsigned char型:0--255之间                    IPL_DEPTH_8U

这个时候如果需要保存图像,请记住要先转换到IPL_DEPTH_8U的深度。因为只有8位单通道或者3通道(通道顺序为'BGR')才可以使用cvSaveImage保存。下


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值