经典证明:任意三角形都能被分成n≥4个等腰三角形

经典证明:任意三角形都能被分成n≥4个等腰三角形

  欢迎您,来自 鲜果订阅的朋友!如果喜欢,您也可以把这篇文章分享到新浪微博:,这样除了作为收藏还分享给了您的朋友!
  欢迎关注我的微博: @IT技术博客大学习
  祝您好运!

    证明:对于任意一个三角形和任意一个大于等于 4 的正整数 n ,都存在一种把这个三角形分割成 n 个等腰三角形的方案。这个问题曾经出现在 1976 年的 Crux Mathematicorum 上。 1977 年, Gali Salvatore 给出了一个非常漂亮的解答。

       首先,让我们来看一看如何把任意一个三角形分成 4 个等腰三角形。如图,作出三角形的高,把整个三角形分成两个小直角三角形。对于每一个直角三角形,作出斜边上的中线后都将会把它分成两个小等腰三角形。于是,我们就把整个三角形分成了 4 个小等腰三角形。

   

    我们借此还能实现,把任意一个三角形分成 7 个等腰三角形:只需要先把它分成 4 个等腰三角形,然后再次套用上述方法,把其中一个小等腰三角形继续细分成 4 个更小的等腰三角形即可。事实上,我们还可以继续这样做下去,从而让等腰三角形的数目 3 个 3 个地增加。因此, n = 4, 7, 10, 13, … 的情况便全部解决了。

    由于我们可以让任意分割方案中的等腰三角形数目加 3 ,因而如果 n = 5 和 n = 6 的情况也解决了, n = 5, 8, 11, 14, … 和 n = 6, 9, 12, 15, … 的情况也都自动地解决了,结论也就证到了。所以,接下来我们只需要考虑 n = 5 和 n = 6 的情况。

    n = 6 的情况非常简单,如图,只需要把三角形分成两个直角三角形,再把其中一个直角三角形继续细分成两个更小的直角三角形,最后作出三个直角三角形各自斜边上的中线即可:

   

    n = 5 的情况呢?我们有一个妙招:先在三角形里边分出一个等腰三角形来,然后把剩下的那个三角形分成四个小等腰三角形:

   

    但是,上面这招有一个缺陷:它不能用于等边三角形。为了从原三角形中分出一个等腰三角形来,我们需要在某条边上截取一段,使得它等于另外一条边的长度。但是,如果三角形的三条边全都一样长,这一点就做不到了。因此,我们必须单独为等边三角形想一种把它分成 5 个等腰三角形的方案。好在这并不困难,我们有很多种办法,比方说,像下图这样:

   

    Which Way Did the Bicycle Go 一书中给出了更多不同的把等边三角形分成 5 个等腰三角形的方案:

   

    至此为止,问题就全部解决了。

   参考资料:Ross Honsberger, From Erdos to Kiev: Problems of Olympiad Caliber, pp. 13-17

我们

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值