三角形ABC 中线为DEF,交点为O,则六块面等。
证明过程如下:
∵BOD和△COD等底等
∴S△BOD=S△COD
同理,S△AOE=S△COE,S△AOF=S△BOF
∵EF∥BC,△BFC和△BEC同底等高
∴S△BFC=S△BEC
∵S△BOF=S△BFC-S△BOC,S△BOF=S△BEC-S△BOC
∴S△BOF=S△BOF
同理,S△AOE=S△BOD,S△AOF=S△COD
所以S△BOD=S△COD=S△AOE=S△COE=S△AOF=S△BOF
扩展资料:
相关性质
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
参考资料来源:百度百科--三角形
参考资料来源:百度百科--中线
三ABC 中线分别为DEF,交点为O
【答案】
【证明】
△BOD和△COD等底等高,
S△BOD=S△COD
同理,S△AOE=S△COE,S△AOF=S△BOF.
∵EF∥BC,△BFC和△BEC同底等高,
∴S△BFC=S△BEC
∵S△BOF=S△BFC-S△BOC,S△BOF=S△BEC-S△BOC,
推荐阅读:
cf魔笛下载1.022 官方版
动量守恒定律教学反思
2017十大互联网理财产品排行一览 投资互联网理财
中国平安一账通寿险E服务
月神殿
六年级下册美术画画一等奖